燕京理工學(xué)院《數(shù)字平面設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
燕京理工學(xué)院《數(shù)字平面設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
燕京理工學(xué)院《數(shù)字平面設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
燕京理工學(xué)院《數(shù)字平面設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
燕京理工學(xué)院《數(shù)字平面設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁燕京理工學(xué)院

《數(shù)字平面設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細(xì)節(jié)信息C.小波變換去噪方法計算復(fù)雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復(fù)出原始的無噪圖像2、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP3、計算機視覺中的圖像配準(zhǔn)是將不同時間、不同視角或不同傳感器獲取的圖像進行匹配和對齊。以下關(guān)于圖像配準(zhǔn)的敘述,不正確的是()A.圖像配準(zhǔn)需要找到圖像之間的對應(yīng)點或特征,然后進行變換和對齊B.圖像配準(zhǔn)在醫(yī)學(xué)圖像分析、遙感圖像處理和三維重建等領(lǐng)域有著廣泛的應(yīng)用C.圖像配準(zhǔn)的精度和魯棒性受到圖像質(zhì)量、噪聲和幾何變形等因素的影響D.圖像配準(zhǔn)是一個簡單的過程,不需要復(fù)雜的算法和優(yōu)化4、在計算機視覺的行人重識別任務(wù)中,假設(shè)要在多個攝像頭拍攝的畫面中找到同一個行人。以下關(guān)于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進行融合D.利用深度學(xué)習(xí)模型自動學(xué)習(xí)特征的融合方式5、計算機視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強的表達(dá)能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要6、在計算機視覺的圖像配準(zhǔn)任務(wù)中,需要將不同時間或視角拍攝的圖像進行對齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進行精確配準(zhǔn),圖像中存在地形變化和云層遮擋。以下哪種圖像配準(zhǔn)方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準(zhǔn)B.基于灰度的配準(zhǔn)C.基于變換模型的配準(zhǔn)D.基于深度學(xué)習(xí)的配準(zhǔn)7、在計算機視覺的文本檢測和識別任務(wù)中,假設(shè)要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進行識別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識別中表現(xiàn)出色,能夠準(zhǔn)確識別各種字體和風(fēng)格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對,沒有任何困難D.可以結(jié)合光學(xué)字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本8、在計算機視覺的視頻分析中,假設(shè)要對一段監(jiān)控視頻中的異常行為進行檢測。以下關(guān)于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運動特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時空特征,同時考慮空間和時間維度的信息9、計算機視覺中的深度估計是計算場景中物體與相機的距離。假設(shè)我們要為一個增強現(xiàn)實應(yīng)用估計場景的深度信息,以下哪種深度估計方法能夠在實時性和準(zhǔn)確性之間取得較好的平衡?()A.基于立體視覺的方法B.基于結(jié)構(gòu)光的方法C.基于深度學(xué)習(xí)的單目深度估計方法D.基于飛行時間(ToF)原理的方法10、在計算機視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的查詢圖像找到相似的圖像。假設(shè)我們有一個大型的圖像數(shù)據(jù)庫,以下哪種圖像表示方法能夠提高圖像檢索的效率和準(zhǔn)確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學(xué)習(xí)的圖像嵌入表示D.基于顏色直方圖的圖像表示11、圖像分割是將圖像細(xì)分為不同的區(qū)域或?qū)ο?。假設(shè)我們需要對醫(yī)學(xué)圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應(yīng)用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學(xué)習(xí)的語義分割算法,如U-Net12、計算機視覺中的圖像增強旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學(xué)圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波13、在計算機視覺的三維重建任務(wù)中,例如從多視角圖像恢復(fù)物體的三維形狀,需要解決相機位姿估計、特征匹配等問題。以下哪種方法在相機位姿估計方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點的方法D.基于深度學(xué)習(xí)的方法14、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動學(xué)習(xí)場景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場景理解模型15、計算機視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計算機視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動態(tài)信息對比賽分析的價值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢D.比賽場地的光照和攝像機視角對計算機視覺分析的結(jié)果沒有影響16、目標(biāo)檢測是計算機視覺中的重要任務(wù)之一。假設(shè)要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.基于傳統(tǒng)的圖像處理方法的目標(biāo)檢測算法在復(fù)雜場景中表現(xiàn)優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)中的單階段目標(biāo)檢測算法比兩階段算法速度快,但精度較低C.目標(biāo)檢測算法只需要關(guān)注目標(biāo)的位置,不需要考慮目標(biāo)的類別D.目標(biāo)檢測的準(zhǔn)確率不受圖像質(zhì)量、光照條件和目標(biāo)大小變化的影響17、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和識別。以下關(guān)于動作識別的描述,不準(zhǔn)確的是()A.動作識別需要分析視頻中的時空特征來理解動作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動作識別任務(wù)中被廣泛應(yīng)用,分別處理空間和時間信息C.動作識別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價值D.動作識別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識別各種復(fù)雜和細(xì)微的動作18、在計算機視覺的醫(yī)學(xué)圖像分析任務(wù)中,假設(shè)要檢測醫(yī)學(xué)圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學(xué)圖像的特殊性?()A.結(jié)合先驗醫(yī)學(xué)知識和圖像特征B.使用通用的圖像檢測算法,不考慮醫(yī)學(xué)背景C.只對圖像的部分區(qū)域進行分析,忽略其他部分D.隨機標(biāo)記圖像中的區(qū)域為腫瘤區(qū)域19、在計算機視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機選擇視頻中的區(qū)域作為跟蹤目標(biāo)20、計算機視覺中的人臉檢測和識別是熱門研究方向。假設(shè)要在一個大規(guī)模的人臉數(shù)據(jù)庫中進行快速準(zhǔn)確的人臉識別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學(xué)習(xí)的方法D.基于主成分分析(PCA)的方法二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述圖像的顯著性檢測的目的。2、(本題5分)簡述圖像的色彩平衡調(diào)整方法。3、(本題5分)計算機視覺中如何進行模型壓縮和加速?4、(本題5分)計算機視覺中如何進行攝像機標(biāo)定?5、(本題5分)描述計算機視覺在海洋軍事中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)研究某品牌的產(chǎn)品包裝標(biāo)簽設(shè)計,分析其如何通過簡潔明了的標(biāo)簽信息和設(shè)計,傳達(dá)產(chǎn)品的特點和品牌形象,提升產(chǎn)品的識別度。2、(本題5分)以某飲料品牌的夏季特別款包裝設(shè)計為例,分析其清涼的元素、口感描述、品牌形象如何吸引消費者購買。3、(本題5分)分析某城市的馬拉松比賽宣傳物料設(shè)計,探討其比賽亮點、報名信息、公益意義如何吸引跑者參加。4、(本題5分)一款新上市的圖書在封面設(shè)計上獨具匠心,成功吸引了讀者的注意。請?zhí)接懛饷嬖O(shè)計中圖像

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論