版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆第一學(xué)期上海市寶安區(qū)高三二診模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知傾斜角為的直線與直線垂直,則()A. B. C. D.2.已知函數(shù)()的最小值為0,則()A. B. C. D.3.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.24.已知函數(shù),當(dāng)時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.5.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.6.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c7.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④8.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件9.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.410.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度11.在平面直角坐標系中,銳角頂點在坐標原點,始邊為x軸正半軸,終邊與單位圓交于點,則()A. B. C. D.12.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為數(shù)列的前項和,若,,且,,則________.14.展開式中項的系數(shù)是__________15.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.16.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)18.(12分)已知函數(shù)(1)當(dāng)時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.19.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點,的橫坐標為.(1)當(dāng)為何值時,公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時,設(shè)公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.20.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內(nèi),求的面積.21.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.22.(10分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計算能力,屬于基礎(chǔ)題.2、C【解析】
設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.3、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計算能力.4、C【解析】
求導(dǎo)分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當(dāng)時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.5、B【解析】
求得雙曲線的一條漸近線方程,設(shè)出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學(xué)生對這些知識的理解掌握水平.6、A【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點睛】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.7、D【解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇.【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.8、D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.9、C【解析】試題分析:根據(jù)題意,當(dāng)時,令,得;當(dāng)時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.10、B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.11、A【解析】
根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡單計算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點在于公式的計算,識記公式,簡單計算,屬基礎(chǔ)題.12、B【解析】
由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以.14、-20【解析】
根據(jù)二項式定理的通項公式,再分情況考慮即可求解.【詳解】解:展開式中項的系數(shù):二項式由通項公式當(dāng)時,項的系數(shù)是,當(dāng)時,項的系數(shù)是,故的系數(shù)為;故答案為:【點睛】本題主要考查二項式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.15、3【解析】
雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).16、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】
選擇①時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計算面積得到答案.【詳解】選擇①時:,,故.根據(jù)正弦定理:,故,故.選擇②時,,,故,為鈍角,故無解.選擇③時,,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18、(1)證明見解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負,求導(dǎo),分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當(dāng)時,,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時,所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時,,使得,即,但當(dāng)時,即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.19、(1)當(dāng)時,公路的長度最短為千米;(2)(千米).【解析】
(1)設(shè)切點的坐標為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設(shè)點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設(shè),則.令,解得=10.當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù).所以當(dāng)時,函數(shù)有極小值,也是最小值,所以,此時.故當(dāng)時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導(dǎo)數(shù)解決實際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實際應(yīng)用,還考查解題分析能力和計算能力.20、(1)(2)【解析】
(1)因為,可得,即可求得答案;(2)分別設(shè)、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進而求得切點,坐標,根據(jù)兩點間距離公式求得,根據(jù)點到直線距離公式求得點到切線的距離,進而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點,,過點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭教育與孩子創(chuàng)新能力培養(yǎng)的關(guān)聯(lián)性研究
- 2024貨車買賣合同范本
- 探索現(xiàn)代教育中孩子自我管理能力的重要性
- 二零二五年度特色熟食購銷合同范本
- 展覽建筑聲學(xué)設(shè)計與空間規(guī)劃的融合
- 專用生產(chǎn)原料采購:2024定制化工品訂購合同版B版
- 2025年度車輛租賃及保養(yǎng)合同2篇
- 二零二五年度航空航天試驗設(shè)備研發(fā)合同2篇
- 2025年度采購合同:制造業(yè)公司與供應(yīng)商材料采購協(xié)議2篇
- 網(wǎng)絡(luò)英語學(xué)習(xí)策略模板
- 車站調(diào)度員(技師)技能鑒定理論考試題庫(含答案)
- 2024年房屋交接確認書
- 小升初中簡歷模板
- 【深信服】PT1-AF認證考試復(fù)習(xí)題庫(含答案)
- 反芻動物消化道排泄物原蟲診斷技術(shù)規(guī)范
- 開放系統(tǒng)10861《理工英語(4)》期末機考真題及答案(第102套)
- 2024年國家能源集團招聘筆試參考題庫含答案解析
- GB/T 43824-2024村鎮(zhèn)供水工程技術(shù)規(guī)范
- 初中地理學(xué)法指導(dǎo)課
- 體檢中心質(zhì)控工作計劃
- 藝術(shù)留學(xué)作品集合同模板
評論
0/150
提交評論