2025屆上海市虹口區(qū)上海外國語大學附屬外國語學校高考考前提分數學仿真卷含解析_第1頁
2025屆上海市虹口區(qū)上海外國語大學附屬外國語學校高考考前提分數學仿真卷含解析_第2頁
2025屆上海市虹口區(qū)上海外國語大學附屬外國語學校高考考前提分數學仿真卷含解析_第3頁
2025屆上海市虹口區(qū)上海外國語大學附屬外國語學校高考考前提分數學仿真卷含解析_第4頁
2025屆上海市虹口區(qū)上海外國語大學附屬外國語學校高考考前提分數學仿真卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市虹口區(qū)上海外國語大學附屬外國語學校高考考前提分數學仿真卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.3.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件4.已知函數,則()A.2 B.3 C.4 D.55.已知函數,且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.6.將函數的圖象沿軸向左平移個單位長度后,得到函數的圖象,則“”是“是偶函數”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結論正確的是()A. B. C. D.8.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.39.若點是角的終邊上一點,則()A. B. C. D.10.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.11.若復數z滿足,則()A. B. C. D.12.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的單調增區(qū)間為__________.14.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.15.三棱柱中,,側棱底面,且三棱柱的側面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.16.在回歸分析的問題中,我們可以通過對數變換把非線性回歸方程,()轉化為線性回歸方程,即兩邊取對數,令,得到.受其啟發(fā),可求得函數()的值域是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關系,并證明.18.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.19.(12分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.20.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數方程為其中,為參數,為常數.(1)寫出與的直角坐標方程;(2)在什么范圍內取值時,與有交點.21.(12分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.22.(10分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關鍵是由三視圖不愿出原幾何體.2、B【解析】

由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.3、B【解析】

由數量積的定義可得,為實數,則由可得,根據共線的性質,可判斷;再根據判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數量積的應用.4、A【解析】

根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.5、C【解析】

根據題意,得,,則為減函數,從而得出函數的單調性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數為減函數,函數在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數的單調性比較大小,還考查化簡能力和轉化思想.6、A【解析】

求出函數的解析式,由函數為偶函數得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數的圖象沿軸向左平移個單位長度,得到的圖象對應函數的解析式為,若函數為偶函數,則,解得,當時,.因此,“”是“是偶函數”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數解析式以及利用三角函數的奇偶性求參數,考查運算求解能力與推理能力,屬于中等題.7、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.8、A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.9、A【解析】

根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、D【解析】

根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.11、D【解析】

先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數的運算和模的計算,意在考查學生對這些知識的理解掌握水平.12、C【解析】

判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出導數,再在定義域上考慮導數的符號為正時對應的的集合,從而可得函數的單調增區(qū)間.【詳解】函數的定義域為.,令,則,故函數的單調增區(qū)間為:.故答案為:.【點睛】本題考查導數在函數單調性中的應用,注意先考慮函數的定義域,再考慮導數在定義域上的符號,本題屬于基礎題.14、【解析】

根據題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質,關鍵是分析a、b之間的關系,屬于基礎題.15、【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設棱柱的底面邊長為,高為,則三棱柱的側面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設,∴三棱柱的側面積為∴又外接球半徑∴外接球表面積.故答案為:【點睛】考查學生對幾何體的正確認識,能通過題意了解到題目傳達的意思,培養(yǎng)學生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題16、【解析】

轉化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數的值域,考查了學生邏輯推理,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)平面.見解析【解析】

(1)要證平面,只需證明,,即可求得答案;(2)連接交于點,連接,根據已知條件求證,即可判斷與平面的位置關系,進而求得答案.【詳解】(1),為邊的中點,,平面平面,平面平面,平面,平面,,在內,,為所在邊的中點,,又,,平面.(2)判斷可知,平面,證明如下:連接交于點,連接.、、分別為邊、、的中點,.又是的重心,,,平面,平面,平面.【點睛】本題主要考查了求證線面垂直和線面平行,解題關鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.18、(1)極小值為,極大值為.(2)【解析】

(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.【點睛】本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.19、(1);(2)見解析.【解析】

(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結論.【詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.20、(1),.(2)【解析】

(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數方程代入的直角坐標方程得:與有交點,即【點睛】本題考查了極坐標方程與普通方程的轉化、參數方程與普通方程的轉化、直線與圓的位置關系的判斷,屬于基礎題.21、(1)證明見解析(2)【解析】

(1)連接,交與,連接,由,得出結論;(2)以為原點,,,分別為,,軸建立空間直角坐標系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論