版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省揭陽市惠來一中、揭東一中高三第一次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.2.已知向量,,若,則()A. B. C.-8 D.83.若的展開式中的常數項為-12,則實數的值為()A.-2 B.-3 C.2 D.34.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或5.若點是角的終邊上一點,則()A. B. C. D.6.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.7.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知集合,,則A. B.C. D.9.若等差數列的前項和為,且,,則的值為().A.21 B.63 C.13 D.8410.已知函數為奇函數,則()A. B.1 C.2 D.311.已知等差數列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內角為,若對任意的恒成立,則實數().A.6 B.5 C.4 D.312.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當地的村委會,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明二、填空題:本題共4小題,每小題5分,共20分。13.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.14.已知實數滿約束條件,則的最大值為___________.15.若非零向量,滿足,,,則______.16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內切圓的圓心的縱坐標為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數是自然對數的底數.(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.18.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.19.(12分)已知函數f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數f(x)的單調區(qū)間;(2)設g(x)=f(x)1,若函數g(x)在上有兩個零點,求實數a的取值范圍.20.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.21.(12分)設函數,.(1)解不等式;(2)若對任意的實數恒成立,求的取值范圍.22.(10分)在直角坐標系中,圓的參數方程為(為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求圓的極坐標方程;(2)直線的極坐標方程是,射線與圓的交點為、,與直線的交點為,求線段的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.2、B【解析】
先求出向量,的坐標,然后由可求出參數的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.3、C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.4、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.5、A【解析】
根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、A【解析】
先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數的圖象,考查學生對這些知識的理解掌握水平.7、A【解析】
根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.8、D【解析】
因為,,所以,,故選D.9、B【解析】
由已知結合等差數列的通項公式及求和公式可求,,然后結合等差數列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數列的通項公式及求和公式的簡單應用,屬于基礎題.10、B【解析】
根據整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數.而為奇函數,為偶函數,所以為偶函數,故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據函數的奇偶性求參數值,屬于基礎題.11、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數列前n項和的最值問題,考查學生的計算能力,是一道基礎題.12、B【解析】
將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由題意設向量的坐標,再結合平面向量數量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數量積的坐標運算,意在考查學生對這些知識的理解掌握水平.14、8【解析】
畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.15、1【解析】
根據向量的模長公式以及數量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數量積公式以及模長公式的應用,屬于中檔題.16、2【解析】
由題意畫出圖形,設內切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯立①②解得:,又因圓心的縱坐標為,.故答案為:【點睛】本題考查雙曲線的幾何性質,考查數形結合思想與運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當時,求得函數的導函數以及二階導函數,由此求得的單調區(qū)間.(2)令求得,構造函數,利用導數求得的單調區(qū)間、極值和最值,結合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設,得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導數研究函數的單調區(qū)間,考查利用導數研究函數的極值點,考查利用導數證明不等式,考查化歸與轉化的數學思想方法,屬于難題.18、(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結論.(2)過作交于,由為的中點,結合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關系,考查利用向量法求二面角的方法,難度一般.19、(1)單調遞減區(qū)間為(0,1),單調遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】
(1)當a=2時,求出,求解,即可得出結論;(2)函數在上有兩個零點等價于a=2x在上有兩解,構造函數,,利用導數,可分析求得實數a的取值范圍.【詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調遞減;當時,單調遞增;故函數的單調遞減區(qū)間為,單調遞增區(qū)間為,(2)設,函數g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區(qū)間上單調遞增,又,所以當時,有,即,當時,有,即,所以在區(qū)間上單調遞減,在區(qū)間上單調遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數a的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性極值與最值、等價轉化思想以及數形結合思想,考查邏輯推理、數學計算能力,屬于中檔題.20、(1);(2).【解析】
(1)由已知根據拋物線和橢圓的定義和性質,可求出,;(2)設直線方程為,聯立直線與圓的方程可以求出,再聯立直線和橢圓的方程化簡,由根與系數的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯立得,易知△>0,則===因為,所以=1,解得聯立,得,△=8>0設,則【點睛】本題主要考查拋物線和橢圓的定義與性質應用,同時考查利用根與系數的關系,解決直線與圓,直線與橢圓的位置關系問題.意在考查學生的數學運算能力.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電維修保養(yǎng)合同范例
- 合同范例 附件
- 舞蹈機構入伙合同范例
- 拆遷中標合同范例
- 企業(yè)超市合同范例
- 出售首層廠房合同范例
- 項目追加合同范例
- 戶外家具合同范例
- 轉手買賣合同范例
- 監(jiān)控材料采購安裝合同范例
- 屋面防水修繕施工方案
- 室內質控月總結報告表
- 青島農業(yè)大學影視藝術概論期末復習題導學資料
- 生產安全事故應急資源調查報告(參考模板)
- 生物信息學在微生物研究領域中的應用
- 分布式光伏發(fā)電項目并網驗收意見單
- 看聽學一冊單詞大全
- 網站隱私政策模板
- YY∕T 1831-2021 梅毒螺旋體抗體檢測試劑盒(免疫層析法)
- 滬教版生物科學八年級上冊重點知識點總結
- 消弧產品規(guī)格實用標準化規(guī)定
評論
0/150
提交評論