




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁皖北衛(wèi)生職業(yè)學(xué)院
《智能計算》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標(biāo)?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是2、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開發(fā)一個能夠監(jiān)測農(nóng)作物病蟲害的系統(tǒng),以下關(guān)于數(shù)據(jù)采集的方式,哪一項是最有效的?()A.依靠農(nóng)民的人工觀察和報告,將信息輸入系統(tǒng)B.使用無人機(jī)搭載的圖像傳感器,定期拍攝農(nóng)田圖像C.僅在農(nóng)作物出現(xiàn)明顯病蟲害癥狀時進(jìn)行數(shù)據(jù)采集D.隨機(jī)選擇農(nóng)田的部分區(qū)域進(jìn)行數(shù)據(jù)采集,以節(jié)省成本3、人工智能中的無監(jiān)督學(xué)習(xí)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無監(jiān)督學(xué)習(xí)的描述,不正確的是()A.聚類分析和主成分分析是常見的無監(jiān)督學(xué)習(xí)方法B.無監(jiān)督學(xué)習(xí)不需要事先標(biāo)注數(shù)據(jù),能夠自動從數(shù)據(jù)中學(xué)習(xí)特征C.無監(jiān)督學(xué)習(xí)的結(jié)果通常難以解釋和評估,應(yīng)用范圍相對較窄D.可以用于數(shù)據(jù)預(yù)處理、特征提取和異常檢測等任務(wù)4、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)要在圖像中準(zhǔn)確檢測出多個不同類別的物體,以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標(biāo)檢測算法在復(fù)雜場景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標(biāo)檢測算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測C.目標(biāo)檢測算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無關(guān)D.所有的目標(biāo)檢測算法都能夠?qū)崟r處理視頻中的目標(biāo)檢測任務(wù)5、在人工智能的智能推薦系統(tǒng)中,冷啟動問題是指在新用戶或新物品加入時缺乏足夠的歷史數(shù)據(jù)進(jìn)行準(zhǔn)確推薦。假設(shè)要解決一個新上線電商平臺的冷啟動問題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門商品的推薦C.基于用戶社交關(guān)系的推薦D.以上策略結(jié)合使用6、在人工智能的圖像識別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計一個用于識別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個因素對于提高識別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量7、人工智能中的知識圖譜技術(shù)可以將實體、關(guān)系和屬性以圖的形式表示,為智能應(yīng)用提供豐富的語義信息。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,需要整合大量的文本、圖像和音頻資料。以下哪種方法在知識抽取和融合方面最為關(guān)鍵?()A.自然語言處理技術(shù)B.圖像識別技術(shù)C.音頻處理技術(shù)D.以上技術(shù)綜合運用8、在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)是重要的分支之一。假設(shè)一個醫(yī)療診斷系統(tǒng)需要通過大量的病例數(shù)據(jù)來預(yù)測疾病,以下關(guān)于機(jī)器學(xué)習(xí)在該場景中的應(yīng)用描述,哪一項是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進(jìn)行疾病預(yù)測B.無監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強(qiáng)化學(xué)習(xí)可以通過與環(huán)境的交互和獎勵機(jī)制,優(yōu)化診斷策略D.機(jī)器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗和判斷,不需要人工干預(yù)9、在人工智能的圖像語義分割任務(wù)中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡單的分割算法,降低計算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對原始圖像進(jìn)行分割10、人工智能中的知識圖譜是一種結(jié)構(gòu)化的知識表示方法。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,以下哪個方面是需要重點考慮的?()A.事件的時間順序B.事件的參與者C.事件的影響力評估D.以上都是11、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。假設(shè)多個機(jī)構(gòu)想要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個模型,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)中,各機(jī)構(gòu)的數(shù)據(jù)需要集中到一個中心服務(wù)器進(jìn)行統(tǒng)一訓(xùn)練B.聯(lián)邦學(xué)習(xí)能夠在不共享原始數(shù)據(jù)的情況下實現(xiàn)模型的協(xié)同訓(xùn)練C.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型結(jié)構(gòu)D.聯(lián)邦學(xué)習(xí)過程中不存在數(shù)據(jù)安全和隱私泄露的風(fēng)險12、在人工智能的圖像識別模型中,假設(shè)需要提高模型對不同光照條件下圖像的魯棒性。以下哪種數(shù)據(jù)增強(qiáng)方法可能有效?()A.隨機(jī)改變圖像的亮度和對比度B.對圖像進(jìn)行裁剪和縮放C.旋轉(zhuǎn)圖像一定角度D.以上都是13、在人工智能的強(qiáng)化學(xué)習(xí)應(yīng)用中,比如訓(xùn)練一個智能體在游戲中獲得高分,以下哪個因素對于學(xué)習(xí)效果和收斂速度可能具有重要影響?()A.獎勵函數(shù)的設(shè)計B.策略網(wǎng)絡(luò)的架構(gòu)C.環(huán)境的復(fù)雜度D.以上都是14、在人工智能的發(fā)展中,倫理原則和規(guī)范的制定至關(guān)重要。以下關(guān)于人工智能倫理原則的敘述,不正確的是()A.應(yīng)遵循公平、公正、透明和可解釋的原則,確保人工智能系統(tǒng)的決策不帶有偏見B.要保障人類的安全和福祉,避免人工智能對人類造成潛在的危害C.知識產(chǎn)權(quán)和隱私保護(hù)在人工智能倫理中不重要,可以忽略D.鼓勵公眾參與和監(jiān)督人工智能的發(fā)展,促進(jìn)社會對人工智能的信任15、在計算機(jī)視覺中,以下哪種任務(wù)需要對圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像分類B.目標(biāo)檢測C.圖像分割D.圖像生成16、生成對抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對抗網(wǎng)絡(luò)的描述,哪一項是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過程非常穩(wěn)定,不會出現(xiàn)模式崩潰等問題17、人工智能中的倫理原則包括公平、透明、可解釋等。假設(shè)一個招聘系統(tǒng)使用人工智能算法篩選簡歷,以下哪種情況可能違反倫理原則?()A.算法基于候選人的教育背景和工作經(jīng)驗進(jìn)行篩選B.算法的決策過程對用戶不可見C.算法對不同性別和種族的候選人一視同仁D.算法能夠解釋其篩選結(jié)果的依據(jù)18、在人工智能的自動駕駛倫理問題中,假設(shè)一輛自動駕駛汽車面臨不可避免的碰撞,必須在保護(hù)車內(nèi)乘客和避免撞到行人之間做出選擇。以下關(guān)于這種倫理困境的解決方法,哪一項是最具爭議的?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全,因為他們是車輛的使用者B.隨機(jī)做出選擇,將命運交給概率C.設(shè)計算法,根據(jù)具體情況(如行人的數(shù)量、年齡等)進(jìn)行權(quán)衡D.完全由汽車制造商決定默認(rèn)的選擇策略,用戶無法干預(yù)19、在一個利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對于實時處理和準(zhǔn)確識別起到重要作用?()A.快速目標(biāo)檢測算法B.高效的特征提取方法C.分布式計算框架D.以上都是20、在人工智能的計算機(jī)視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響21、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識和模型來解決新的問題。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對于遷移學(xué)習(xí)的成功至關(guān)重要22、人工智能中的深度學(xué)習(xí)模型通常需要大量的計算資源進(jìn)行訓(xùn)練。假設(shè)一個研究團(tuán)隊資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過對原始數(shù)據(jù)進(jìn)行隨機(jī)變換來增加數(shù)據(jù)量B.選擇輕量級的模型架構(gòu),減少參數(shù)數(shù)量和計算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無論資源如何有限,都不能對模型進(jìn)行任何簡化和壓縮23、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?4、人工智能在金融領(lǐng)域的風(fēng)險評估和欺詐檢測中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個系統(tǒng)來檢測信用卡交易中的欺詐行為,需要實時分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實時、動態(tài)的數(shù)據(jù)時最為有效?()A.實時數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗的規(guī)則判斷D.隨機(jī)抽樣檢查25、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)具有強(qiáng)大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項是不正確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實性上可以與真實拍攝的圖像完全無法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果26、人工智能中的語音識別技術(shù)正在改變?nèi)藗兣c計算機(jī)的交互方式。假設(shè)要開發(fā)一個能夠準(zhǔn)確識別不同口音和語速的語音識別系統(tǒng)。以下關(guān)于語音識別的描述,哪一項是不準(zhǔn)確的?()A.特征提取是語音識別中的關(guān)鍵步驟,用于將語音信號轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語言模型共同作用,提高語音識別的準(zhǔn)確率C.語音識別系統(tǒng)對于背景噪音和多人同時說話的場景能夠輕松應(yīng)對,不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語音識別系統(tǒng)在復(fù)雜場景下的性能27、人工智能在教育領(lǐng)域有潛在的應(yīng)用價值。假設(shè)要開發(fā)一個個性化學(xué)習(xí)系統(tǒng),能夠根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)計劃。以下關(guān)于收集學(xué)生學(xué)習(xí)數(shù)據(jù)的方法,哪一項是需要謹(jǐn)慎處理的?()A.跟蹤學(xué)生在在線學(xué)習(xí)平臺上的學(xué)習(xí)時間、答題情況等B.收集學(xué)生的個人興趣愛好和家庭背景等信息C.分析學(xué)生的作業(yè)和考試成績,了解其知識掌握程度D.通過問卷調(diào)查了解學(xué)生的學(xué)習(xí)風(fēng)格和偏好28、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢是?()A.對姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性29、情感計算是人工智能的一個新興領(lǐng)域,旨在讓計算機(jī)理解和處理人類的情感。假設(shè)要開發(fā)一個能夠識別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計算的描述,哪一項是不準(zhǔn)確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計算的應(yīng)用可以包括心理咨詢、客戶服務(wù)等領(lǐng)域C.目前的情感計算技術(shù)已經(jīng)能夠準(zhǔn)確無誤地識別和理解所有復(fù)雜的人類情感D.情感模型的訓(xùn)練需要大量標(biāo)注了情感標(biāo)簽的數(shù)據(jù)30、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語言模型的描述,哪一項是不正確的?()A.預(yù)訓(xùn)練語言模型在大規(guī)模通用語料上學(xué)習(xí)了語言的通用知識和模式B.微調(diào)時可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對預(yù)訓(xùn)練語言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化二、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的TensorFlow庫,構(gòu)建一個生成對抗網(wǎng)絡(luò)(GAN),用于生成具有創(chuàng)意的服裝設(shè)計圖。結(jié)合時尚元素和流行趨勢,引導(dǎo)生成符合市場需求的設(shè)計作品。2、(本題5分)運用深度學(xué)習(xí)框架構(gòu)建一個文本分類模型,對電子郵件進(jìn)行分類,如垃圾郵件和正常郵件。3、(本題5分)使用Python中的機(jī)器學(xué)習(xí)庫Scikit-learn,加載一個標(biāo)準(zhǔn)的數(shù)據(jù)集(如鳶尾花數(shù)據(jù)集),進(jìn)行數(shù)據(jù)預(yù)處理,包括數(shù)據(jù)清洗、特征選擇等操作,然后使用合適的分類算法進(jìn)行訓(xùn)練和預(yù)測。4、(本題5分)利用Python的TensorFlow框架,構(gòu)建一個基于生成對抗網(wǎng)絡(luò)(GAN)的文本生成模型。能夠生成自然流暢、有邏輯的文本內(nèi)容。5、(本題5分)使用Python的TensorFlow庫,構(gòu)建一個生成對抗網(wǎng)絡(luò)(GAN),用于生成具有藝術(shù)風(fēng)格的繪畫作品。通過調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù),提高
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西防城港市上思縣重點達(dá)標(biāo)名校2024-2025學(xué)年初三一測化學(xué)試題試卷含解析
- 洛陽科技職業(yè)學(xué)院《金屬切削原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林省長春市教研室重點達(dá)標(biāo)名校2024-2025學(xué)年初三下學(xué)期第五次月考(一模)英語試題試卷含答案
- 江西冶金職業(yè)技術(shù)學(xué)院《英語聽力三》2023-2024學(xué)年第二學(xué)期期末試卷
- 曲靖師范學(xué)院《高級英語A2》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶師范大學(xué)《環(huán)境生態(tài)工程CAD》2023-2024學(xué)年第二學(xué)期期末試卷
- 河北省南宮市私立實驗小學(xué)2024-2025學(xué)年五下數(shù)學(xué)期末檢測模擬試題含答案
- 山西省晉城市部分學(xué)校 2024-2025學(xué)年七年級下學(xué)期3月月考生物試題(含答案)
- 2024-2025學(xué)年福建省寧德市高二下學(xué)期3月月考英語試題(含答案)
- 招商銀行企業(yè)文化培訓(xùn)
- GIS軟件工程第章 GIS軟件工程的方法
- 猜猜我有多愛你(繪本)
- 2019年遼寧省普通高考志愿填報表(一)
- x-y數(shù)控工作臺機(jī)電系統(tǒng)設(shè)計
- 《地基基礎(chǔ)-基樁靜荷載試驗》考試復(fù)習(xí)題庫(含答案)
- 工程交付使用表
- 電子物證專業(yè)考試復(fù)習(xí)題庫(含答案)
- 質(zhì)量檢驗控制流程圖
- 人教版音樂三年級下冊知識總結(jié)
- 2022年江蘇對口單招市場營銷試卷剖析
- 【課件】第7課 西方古典美術(shù)的傳統(tǒng)與成就 課件高中美術(shù)魯美版美術(shù)鑒賞
評論
0/150
提交評論