版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在研究一個(gè)自然語言處理任務(wù),例如文本分類。文本數(shù)據(jù)具有豐富的語義和語法結(jié)構(gòu),同時(shí)詞匯量很大。為了有效地表示這些文本,以下哪種文本表示方法在深度學(xué)習(xí)中經(jīng)常被使用?()A.詞袋模型(BagofWords)B.詞嵌入(WordEmbedding)C.主題模型(TopicModel)D.語法樹表示2、假設(shè)正在開發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測用戶的興趣和需求。在這個(gè)過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶購買每種商品的頻率B.對用戶購買的商品進(jìn)行分類,并計(jì)算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計(jì)算用戶購買商品的時(shí)間間隔和購買周期3、假設(shè)正在開發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法4、在一個(gè)強(qiáng)化學(xué)習(xí)的應(yīng)用中,環(huán)境的狀態(tài)空間非常大且復(fù)雜。以下哪種策略可能有助于提高學(xué)習(xí)效率?()A.基于值函數(shù)的方法,如Q-learning,通過估計(jì)狀態(tài)值來選擇動(dòng)作,但可能存在過高估計(jì)問題B.策略梯度方法,直接優(yōu)化策略,但方差較大且收斂慢C.演員-評論家(Actor-Critic)方法,結(jié)合值函數(shù)和策略梯度的優(yōu)點(diǎn),但模型復(fù)雜D.以上方法結(jié)合使用,并根據(jù)具體環(huán)境進(jìn)行調(diào)整5、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以6、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個(gè)重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)7、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說法中,錯(cuò)誤的是:集成學(xué)習(xí)通過組合多個(gè)弱學(xué)習(xí)器來構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說法錯(cuò)誤的是()A.bagging方法通過隨機(jī)采樣訓(xùn)練數(shù)據(jù)來構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過逐步調(diào)整樣本權(quán)重來構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好8、某研究需要對大量的文本數(shù)據(jù)進(jìn)行情感分析,判斷文本的情感傾向是積極、消極還是中性。以下哪種機(jī)器學(xué)習(xí)方法在處理此類自然語言處理任務(wù)時(shí)經(jīng)常被采用?()A.基于規(guī)則的方法B.機(jī)器學(xué)習(xí)分類算法C.深度學(xué)習(xí)情感分析模型D.以上方法都可能有效,取決于數(shù)據(jù)和任務(wù)特點(diǎn)9、某機(jī)器學(xué)習(xí)項(xiàng)目需要對大量的圖像進(jìn)行分類,但是計(jì)算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計(jì)算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮10、考慮一個(gè)圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο?。以下哪種方法常用于圖像分割?()A.閾值分割B.區(qū)域生長C.邊緣檢測D.以上都是11、考慮一個(gè)時(shí)間序列預(yù)測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以12、在一個(gè)金融風(fēng)險(xiǎn)預(yù)測的項(xiàng)目中,需要根據(jù)客戶的信用記錄、收入水平、負(fù)債情況等多種因素來預(yù)測其違約的可能性。同時(shí),要求模型能夠適應(yīng)不斷變化的市場環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)模浚ǎ〢.構(gòu)建一個(gè)線性回歸模型,簡單直觀,易于解釋和更新,但可能無法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過擬合,能夠處理二分類問題,但對于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力13、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以14、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對不同的物體進(jìn)行分類,例如貓、狗、汽車等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對圖像進(jìn)行模糊處理D.減小圖像的分辨率15、在機(jī)器學(xué)習(xí)中,特征選擇是一項(xiàng)重要的任務(wù),旨在從眾多的原始特征中選擇出對模型性能有顯著影響的特征。假設(shè)我們有一個(gè)包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時(shí),以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗(yàn)和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識(shí)和經(jīng)驗(yàn),手動(dòng)選擇特征16、在進(jìn)行特征工程時(shí),需要對連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化17、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成18、在一個(gè)工業(yè)生產(chǎn)的質(zhì)量控制場景中,需要通過機(jī)器學(xué)習(xí)來實(shí)時(shí)監(jiān)測產(chǎn)品的質(zhì)量參數(shù),及時(shí)發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動(dòng)態(tài)變化和噪聲等特點(diǎn)。以下哪種監(jiān)測和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測異常數(shù)據(jù)點(diǎn),但對于高維數(shù)據(jù)效果可能不穩(wěn)定C.運(yùn)用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類和可視化,但實(shí)時(shí)性可能不足D.利用基于深度學(xué)習(xí)的自動(dòng)編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對異常數(shù)據(jù)有較好的檢測能力,但訓(xùn)練和計(jì)算成本較高19、在進(jìn)行時(shí)間序列預(yù)測時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測股票價(jià)格的走勢。以下關(guān)于時(shí)間序列預(yù)測方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過對歷史數(shù)據(jù)的加權(quán)平均和殘差來進(jìn)行預(yù)測B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測任務(wù)D.所有的時(shí)間序列預(yù)測方法都能準(zhǔn)確地預(yù)測未來的股票價(jià)格,不受市場不確定性和突發(fā)事件的影響20、在機(jī)器學(xué)習(xí)中,對于一個(gè)分類問題,我們需要選擇合適的算法來提高預(yù)測準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋袋裝法(Bagging)和提升法(Boosting)的區(qū)別。2、(本題5分)解釋機(jī)器學(xué)習(xí)在海洋生物學(xué)中的生態(tài)監(jiān)測。3、(本題5分)解釋在深度學(xué)習(xí)中,激活函數(shù)的作用。4、(本題5分)簡述機(jī)器學(xué)習(xí)中的聚類算法及其分類。5、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行文本摘要生成。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于RNN對自然語言中的語法錯(cuò)誤進(jìn)行檢測。2、(本題5分)采用自適應(yīng)矩估計(jì)(Adam)優(yōu)化算法訓(xùn)練圖像分類模型。3、(本題5分)借助藝術(shù)創(chuàng)作數(shù)據(jù)激發(fā)創(chuàng)作靈感和創(chuàng)新。4、(本題5分)運(yùn)用回歸模型預(yù)測工廠的生產(chǎn)效率。5、(本題5分)利用睡眠醫(yī)學(xué)數(shù)據(jù)監(jiān)測睡眠質(zhì)量和診斷睡眠障礙。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024旅游景點(diǎn)開發(fā)與保護(hù)合同
- 2024某保險(xiǎn)公司與某企業(yè)之間的2024年度員工團(tuán)險(xiǎn)合同
- 2025年度智能物流配送中心承包合同范本2篇
- 2024年雇傭責(zé)任免除協(xié)議版B版
- 不動(dòng)產(chǎn)企業(yè)股權(quán)轉(zhuǎn)讓細(xì)化合同2024版版B版
- 2024年某商業(yè)大廈建筑模板專業(yè)分包合同一
- 2025年度高端教育機(jī)構(gòu)合作辦學(xué)合同3篇 - 副本
- 2024版房屋租賃合同(商業(yè)用途)
- 2025年度太陽能玻璃組件供應(yīng)與安裝一體化服務(wù)合同2篇
- 2025年生態(tài)葡萄種植基地采購合同示范文本3篇
- 林業(yè)基礎(chǔ)知識(shí)考試題庫單選題100道及答案解析
- GB/T 19228.1-2024不銹鋼卡壓式管件組件第1部分:卡壓式管件
- 西門子plc編程入門基礎(chǔ)單選題100道及答案解析
- 朗文2B課本詞匯表
- 2024年人教版九年級英語單詞默寫單(微調(diào)版)
- DB32T-道面攤鋪壓實(shí)智能化無人集群施工技術(shù)規(guī)范編制說明
- 貴州省貴陽市英語小學(xué)六年級上學(xué)期試卷及答案指導(dǎo)(2024年)
- 2024年全國職業(yè)院校技能大賽高職組(智能飛行器應(yīng)用技術(shù)賽項(xiàng))備賽試題庫(含答案)
- 人教版四年級上冊數(shù)學(xué)【選擇題】專項(xiàng)練習(xí)100題附答案
- CommVault備份軟件操作手冊3
- 初中體育教案【完整版】七年級
評論
0/150
提交評論