天津鐵道職業(yè)技術(shù)學(xué)院《法理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
天津鐵道職業(yè)技術(shù)學(xué)院《法理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
天津鐵道職業(yè)技術(shù)學(xué)院《法理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
天津鐵道職業(yè)技術(shù)學(xué)院《法理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
天津鐵道職業(yè)技術(shù)學(xué)院《法理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁天津鐵道職業(yè)技術(shù)學(xué)院

《法理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對于視頻中的異常檢測任務(wù),假設(shè)要在一段監(jiān)控視頻中檢測出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準(zhǔn)確檢測異常?()A.建立正常行為模型,對比檢測異常B.只關(guān)注視頻中的顯著運(yùn)動區(qū)域C.隨機(jī)判斷視頻中的幀是否異常D.不進(jìn)行異常檢測,直接忽略異常事件2、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時跟蹤物體并確定其在空間中的位置。假設(shè)要在一個室內(nèi)環(huán)境中跟蹤一個移動的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長期跟蹤與定位C.同時使用多個相機(jī)進(jìn)行觀測不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動態(tài)障礙物對視覺跟蹤與定位的結(jié)果影響較小3、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關(guān)于圖像特征表示的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機(jī)選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征4、在計(jì)算機(jī)視覺的立體視覺任務(wù)中,通過兩個或多個相機(jī)獲取的圖像來計(jì)算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是5、在計(jì)算機(jī)視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進(jìn)行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計(jì)算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像6、圖像分類是計(jì)算機(jī)視覺的基本任務(wù)之一。假設(shè)要對大量的動物圖像進(jìn)行分類,將其分為貓、狗、兔子等類別。在進(jìn)行圖像分類時,以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計(jì)的特征,如顏色直方圖、紋理特征等,總是比自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到具有判別性的圖像特征,無需人工干預(yù)C.特征提取的好壞對圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準(zhǔn)確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性7、在計(jì)算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準(zhǔn)確的三維重建結(jié)果,以下哪種技術(shù)是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應(yīng)點(diǎn)B.直接使用二維圖像的平均信息來估計(jì)三維形狀C.忽略圖像中的噪聲和誤差,進(jìn)行簡單的重建D.隨機(jī)生成三維模型,然后與二維圖像進(jìn)行匹配8、計(jì)算機(jī)視覺中的目標(biāo)計(jì)數(shù)是估計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要在一張人群圖像中準(zhǔn)確計(jì)數(shù)人數(shù),以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,正確的是:()A.基于檢測的計(jì)數(shù)方法通過檢測每個個體來實(shí)現(xiàn)計(jì)數(shù),對密集場景效果好B.基于回歸的計(jì)數(shù)方法直接預(yù)測目標(biāo)數(shù)量,計(jì)算速度快但精度較低C.深度學(xué)習(xí)中的注意力機(jī)制在目標(biāo)計(jì)數(shù)中沒有作用,不能提高計(jì)數(shù)準(zhǔn)確性D.目標(biāo)計(jì)數(shù)只需要考慮目標(biāo)的外觀特征,不需要考慮圖像的上下文信息9、在計(jì)算機(jī)視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進(jìn)行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來10、假設(shè)要開發(fā)一個能夠?qū)ξ奈镞M(jìn)行數(shù)字化保護(hù)和修復(fù)的計(jì)算機(jī)視覺系統(tǒng),需要對文物的破損部分進(jìn)行準(zhǔn)確識別和重建。以下哪種技術(shù)在文物修復(fù)方面可能具有應(yīng)用潛力?()A.圖像修復(fù)算法B.三維重建技術(shù)C.虛擬增強(qiáng)現(xiàn)實(shí)技術(shù)D.以上都是11、在計(jì)算機(jī)視覺的視覺跟蹤與監(jiān)控應(yīng)用中,需要對特定目標(biāo)進(jìn)行持續(xù)的跟蹤和監(jiān)測。假設(shè)要對一個在大型商場中移動的可疑人員進(jìn)行跟蹤,同時要應(yīng)對人群遮擋和環(huán)境變化。以下哪種視覺跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標(biāo)跟蹤算法B.基于深度學(xué)習(xí)的單目標(biāo)跟蹤C(jī).基于粒子濾波的跟蹤D.基于特征匹配的跟蹤12、在計(jì)算機(jī)視覺的遙感圖像分析中,假設(shè)要從衛(wèi)星遙感圖像中提取土地利用信息,以下哪種技術(shù)可能對區(qū)分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能13、在計(jì)算機(jī)視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)14、在計(jì)算機(jī)視覺的目標(biāo)計(jì)數(shù)任務(wù)中,統(tǒng)計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計(jì)一個果園中蘋果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進(jìn)行計(jì)數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測蘋果的數(shù)量C.目標(biāo)計(jì)數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計(jì)數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計(jì)數(shù)的準(zhǔn)確性15、計(jì)算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測中的計(jì)算機(jī)視覺技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺方法在檢測復(fù)雜的表面缺陷時比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測出各種缺陷C.工業(yè)檢測中的計(jì)算機(jī)視覺系統(tǒng)不需要考慮實(shí)時性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對表面缺陷檢測的結(jié)果沒有影響二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述計(jì)算機(jī)視覺在無人駕駛中的障礙物檢測和路徑規(guī)劃。2、(本題5分)說明計(jì)算機(jī)視覺在軍事中的應(yīng)用。3、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行武器裝備檢測和維護(hù)?三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)運(yùn)用圖像識別算法,對不同類型的手表圖像進(jìn)行分類和識別。2、(本題5分)對航拍圖像中的道路和建筑物進(jìn)行自動測繪和建模。3、(本題5分)基于計(jì)算機(jī)視覺的智能交通流量監(jiān)測系統(tǒng),實(shí)時統(tǒng)計(jì)車流量和道路擁堵情況。4、(本題5分)利用圖像增強(qiáng)技術(shù),提高夜間監(jiān)控圖像的可視性和清晰度。5、(本題5分)利用圖像識別技術(shù),對不同品牌的空調(diào)外機(jī)圖像進(jìn)行識別和分類。四、分析題(本大題共3個小題,共30分)1、(本題10分)以一款游戲的道具設(shè)計(jì)為例,分析其造型、功能、色彩如何與游戲主題和玩法相配合,提升

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論