2025屆四川省攀枝花市七中高三第一次模擬考試數(shù)學試卷含解析_第1頁
2025屆四川省攀枝花市七中高三第一次模擬考試數(shù)學試卷含解析_第2頁
2025屆四川省攀枝花市七中高三第一次模擬考試數(shù)學試卷含解析_第3頁
2025屆四川省攀枝花市七中高三第一次模擬考試數(shù)學試卷含解析_第4頁
2025屆四川省攀枝花市七中高三第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆四川省攀枝花市七中高三第一次模擬考試數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.2.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.3.定義運算,則函數(shù)的圖象是().A. B.C. D.4.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.5.某校在高一年級進行了數(shù)學競賽(總分100分),下表為高一·一班40名同學的數(shù)學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數(shù)學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.126.已知向量,,,若,則()A. B. C. D.7.已知向量,,若,則與夾角的余弦值為()A. B. C. D.8.已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.9.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.10.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.211.已知向量,,則與的夾角為()A. B. C. D.12.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量的分布列如表所示,則______,______.-10114.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內放置一球,則球體積的最大值為_________.15.函數(shù)的極大值為________.16.學校藝術節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.18.(12分)改革開放年,我國經濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中19.(12分)已知函數(shù)(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.20.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若對任意成立,求實數(shù)的取值范圍.21.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:22.(10分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學生綜合分析,數(shù)形結合,數(shù)學運算的能力,屬于中檔題.2、A【解析】

設出A,B的坐標,利用導數(shù)求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質,考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據(jù)得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.3、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.4、D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.5、D【解析】

根據(jù)程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎知識;考查運算求解能力,邏輯推理能力和數(shù)學應用意識.6、A【解析】

根據(jù)向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.7、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數(shù)量積的應用,考查運算求解能力以及化歸與轉化思想.8、B【解析】

由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查利用分段函數(shù)的單調性求參數(shù),一般要分析每支函數(shù)的單調性,同時還要考慮分段點處函數(shù)值的大小關系,考查運算求解能力,屬于中等題.9、C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數(shù)的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當時,,則,此時;當時,,此時.綜上所述,函數(shù)的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時也考查了分段函數(shù)基本性質的應用,考查分類討論思想的應用,屬于中等題.10、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質的應用,屬于基礎題.11、B【解析】

由已知向量的坐標,利用平面向量的夾角公式,直接可求出結果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.12、C【解析】

連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關鍵.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.【點睛】本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.14、【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設,由球與四棱錐的內切關系可知,設,用和表示四棱錐的體積,解得和的關系,進而表示出內切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設,,由球O內切于四棱錐可知,,,則,球O的半徑,,,,當且僅當時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內切球問題,考查空間想象能力,屬于較難的填空壓軸題.15、【解析】

對函數(shù)求導,根據(jù)函數(shù)單調性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數(shù)有極大值.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.16、C【解析】

假設獲得一等獎的作品,判斷四位同學說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結果,2、假設結果檢驗條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數(shù)量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段長最小為當點與點不重合時,設,化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程的互化、直線與圓的位置關系、列方程求動點的軌跡方程,屬于基礎題.18、,概率為;列聯(lián)表詳見解析,有的把握認為交通安全意識與性別有關;.【解析】

根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結論;用分層抽樣法求得抽取各分數(shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強安全意識不強合計男性女性合計所以有的把握認為交通安全意識與性別有關.由題意可知分數(shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點睛】本題考查獨立性檢驗應用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.19、(1)證明見解析(2)【解析】

(1)根據(jù),求導,令,用導數(shù)法求其最小值.設研究在處左正右負,求導,分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當時,,所以函數(shù)在上單調遞增.若,則若,則所以函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是,所以在處取得極小值,不符合題意,②當時,所以函數(shù)在上單調遞減.若,則若,則所以的單調遞減區(qū)間是,單調遞增區(qū)間是,所以在處取得極大值,符合題意.③當時,,使得,即,但當時,即所以函數(shù)在上單調遞減,所以,即函數(shù))在上單調遞減,不符合題意綜上所述,的取值范圍是【點睛】本題主要考查導數(shù)與函數(shù)的單調性和極值,還考查了轉化化歸的思想和運算求解的能力,屬于難題.20、(1)(2)【解析】

(1)把代入,利用零點分段討論法求解;(2)對任意成立轉化為求的最小值可得.【詳解】解:(1)當時,不等式可化為.討論:①當時,,所以,所以;②當時,,所以,所以;③當時,,所以,所以.綜上,當時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數(shù)的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉化為最值問題求解,側重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).21、(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數(shù)利用導數(shù)判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論