版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省普通高中2025屆高考數(shù)學(xué)二模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于2.已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.3.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.4.一個(gè)四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個(gè)四棱錐中最最長(zhǎng)棱的長(zhǎng)度是().A. B. C. D.5.兩圓和相外切,且,則的最大值為()A. B.9 C. D.16.設(shè)x、y、z是空間中不同的直線或平面,對(duì)下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②7.函數(shù)圖象的大致形狀是()A. B.C. D.8.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.9.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個(gè)面中,最大面的面積為()A.2 B.5 C. D.10.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.11.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.12.已知集合,,若,則實(shí)數(shù)的值可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中,項(xiàng)的系數(shù)是__________.14.已知圓C:經(jīng)過(guò)拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長(zhǎng)是__________.15.正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).其中正確命題的序號(hào)是________.(寫(xiě)出所有正確命題的序號(hào))16.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點(diǎn).(1)求證:平面;(2)若,點(diǎn)是線段上一點(diǎn),且,求直線與平面所成角的正弦值.18.(12分)如圖,三棱臺(tái)的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.19.(12分)隨著現(xiàn)代社會(huì)的發(fā)展,我國(guó)對(duì)于環(huán)境保護(hù)越來(lái)越重視,企業(yè)的環(huán)保意識(shí)也越來(lái)越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測(cè)系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用預(yù)算定為1200萬(wàn)元,日常全天候開(kāi)啟3套環(huán)境監(jiān)測(cè)系統(tǒng),若至少有2套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即同時(shí)啟動(dòng)另外2套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測(cè),且后啟動(dòng)的這2套監(jiān)測(cè)系統(tǒng)中只要有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個(gè)時(shí)間段(以1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)的概率均為,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)情況相互獨(dú)立.(1)當(dāng)時(shí),求某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測(cè)系統(tǒng)運(yùn)行成本為300元/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測(cè)系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬(wàn)元.現(xiàn)以此方案實(shí)施,問(wèn)該企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用是否會(huì)超過(guò)預(yù)算(全年按9000小時(shí)計(jì)算)?并說(shuō)明理由.20.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.22.(10分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.2、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.3、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.4、A【解析】
作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計(jì)算每一條棱長(zhǎng)即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個(gè)四棱錐中最長(zhǎng)棱的長(zhǎng)度是.故選.【點(diǎn)睛】本題考查了四棱錐的三視圖的有關(guān)計(jì)算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.5、A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.6、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.【點(diǎn)睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過(guò)特殊值法進(jìn)行排除,屬于簡(jiǎn)單題目.7、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因?yàn)?,所以,所以函?shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點(diǎn)睛】本題考查函數(shù)表達(dá)式判斷函數(shù)圖像,屬于中檔題.8、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過(guò)圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過(guò)作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問(wèn)題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.9、D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個(gè)三棱錐,如圖所示,將其放在一個(gè)長(zhǎng)方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,復(fù)雜的三視圖還原為幾何體時(shí),一般借助長(zhǎng)方體來(lái)實(shí)現(xiàn).10、A【解析】
根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過(guò)球的半徑以及球心到截面的距離去計(jì)算.11、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時(shí)雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、D【解析】
由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點(diǎn)睛】考查描述法表示集合的定義,以及并集的定義及運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、240【解析】
利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,令x的指數(shù)等于3,計(jì)算展開(kāi)式中含有項(xiàng)的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點(diǎn)睛】本題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)公式及簡(jiǎn)單應(yīng)用,相對(duì)不難.14、【解析】
求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長(zhǎng)的一半,進(jìn)而求出弦長(zhǎng).【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長(zhǎng).【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長(zhǎng)公式.15、①②③④【解析】
取中點(diǎn),中點(diǎn),中點(diǎn),先利用中位線的性質(zhì)判斷點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面,畫(huà)出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長(zhǎng)為2,進(jìn)而求解;③由,取為中點(diǎn),則,則即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.【詳解】取中點(diǎn),連接,則,所以,所以平面即為平面,取中點(diǎn),中點(diǎn),連接,則易證得,所以平面平面,所以點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面.①取為中點(diǎn),因?yàn)槭堑妊切?所以,又因?yàn)?所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長(zhǎng)為2,當(dāng)點(diǎn)為中點(diǎn)時(shí),直線與直線所成角最小,此時(shí),;當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),直線與直線所成角最大,此時(shí),所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點(diǎn),則即為與平面所成的銳二面角,,所以③正確;④正方體的各個(gè)側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點(diǎn)睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.16、0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點(diǎn)睛】本題主要考查數(shù)據(jù)的方差,明確方差的計(jì)算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】
(1)的中點(diǎn),連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點(diǎn)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,分別是,的中點(diǎn),,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點(diǎn),以,,為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,0,,,2,,是的中點(diǎn),是的三等分點(diǎn),,1,,,,,,,,,0,,,2,,設(shè)平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計(jì)算,屬于中檔題.18、(Ⅰ)見(jiàn)證明;(Ⅱ)【解析】
(Ⅰ)取的中點(diǎn)為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點(diǎn),可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量為,設(shè)與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點(diǎn)為,連結(jié).由是三棱臺(tái)得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點(diǎn),∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結(jié).由是正三角形,且為中點(diǎn),則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,∴,,.設(shè)平面的一個(gè)法向量為.由可得,.令,則,,∴.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學(xué)生的邏輯推理能力與計(jì)算求解能力,屬于中檔題.19、(1);(2)不會(huì)超過(guò)預(yù)算,理由見(jiàn)解析【解析】
(1)求出某個(gè)時(shí)間段在開(kāi)啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開(kāi)啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對(duì)其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【詳解】(1)某個(gè)時(shí)間段在開(kāi)啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開(kāi)啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率為.(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.,令,則當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在上單調(diào)遞減,的最大值為,實(shí)施此方案,最高費(fèi)用為(萬(wàn)元),,故不會(huì)超過(guò)預(yù)算.【點(diǎn)睛】本題考查獨(dú)立重復(fù)事件發(fā)生的概率、期望,及運(yùn)用求導(dǎo)函數(shù)研究期望的最值,由根據(jù)期望值確定方案,此類題目解決的關(guān)鍵在于將生活中的量轉(zhuǎn)化為數(shù)學(xué)中和量,屬于中檔題.20、(1)①;②8079;(2).【解析】
(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對(duì)任意給定的,,在區(qū)間,上總存在兩個(gè)不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)椋?,故,,①此時(shí),當(dāng)變化時(shí)、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對(duì)任意給定的,在區(qū)間上總存在兩個(gè)不同的,使得成立,當(dāng)且僅當(dāng)滿足下列條件,即令,,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減所以,對(duì)任意,有,即②對(duì)任意恒成立.由③式解得:④綜合①④可知,當(dāng)時(shí),對(duì)任意給定的,在上總存在兩個(gè)不同的,使成立.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問(wèn)題,會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新城區(qū)基礎(chǔ)設(shè)施應(yīng)急搶修服務(wù)合同2篇
- 2024施工合同規(guī)范:生態(tài)景觀工程施工與維護(hù)合同3篇
- 2024年魚(yú)池轉(zhuǎn)讓與養(yǎng)殖產(chǎn)業(yè)一體化發(fā)展合作協(xié)議3篇
- 2024年網(wǎng)絡(luò)商城品牌授權(quán)供貨合同
- 一類醫(yī)療器械地區(qū)經(jīng)銷協(xié)議模板版B版
- 分娩后皮膚知識(shí)培訓(xùn)課件
- 2024年集體土地農(nóng)業(yè)用途承包合同
- 2024戰(zhàn)略采購(gòu)項(xiàng)目合作合同版B版
- 2024模具生產(chǎn)自動(dòng)化改造項(xiàng)目合同3篇
- 2024年貸款車輛使用及車輛租賃與銷售管理協(xié)議3篇
- 《心肺復(fù)蘇及電除顫》課件
- 2024年醫(yī)師定期考核臨床業(yè)務(wù)知識(shí)考試題庫(kù)及答案(共三套)
- 建筑材料供應(yīng)鏈管理服務(wù)合同
- 養(yǎng)殖場(chǎng)巡查制度模板
- 孩子改名字父母一方委托書(shū)
- 2024-2025學(xué)年人教版初中物理九年級(jí)全一冊(cè)《電與磁》單元測(cè)試卷(原卷版)
- 江蘇單招英語(yǔ)考綱詞匯
- 淋巴水腫康復(fù)治療技術(shù)
- 礦山隱蔽致災(zāi)普查治理報(bào)告
- 零星維修工程 投標(biāo)方案(技術(shù)方案)
- 護(hù)理基礎(chǔ)測(cè)試題+參考答案
評(píng)論
0/150
提交評(píng)論