云南省隴川縣民族中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷含解析_第1頁
云南省隴川縣民族中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷含解析_第2頁
云南省隴川縣民族中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷含解析_第3頁
云南省隴川縣民族中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷含解析_第4頁
云南省隴川縣民族中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省隴川縣民族中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、2.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.43.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.4.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.5.已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是()A. B. C. D.6.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個新數(shù)列,則()A.1194 B.1695 C.311 D.10957.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.8.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.9.設(shè)雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.10.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.11.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.412.設(shè)為銳角,若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則__________;__________.14.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.15.已知,若,則a的取值范圍是______.16.若關(guān)于的不等式在上恒成立,則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若關(guān)于的方程的兩根都大于2,求實數(shù)的取值范圍.18.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)經(jīng)過點且斜率存在的直線交橢圓于兩點,點與點關(guān)于坐標原點對稱.連接.求證:存在實數(shù),使得成立.19.(12分)設(shè)為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.20.(12分)已知,,,,證明:(1);(2).21.(12分)在平面直角坐標系中,為直線上動點,過點作拋物線:的兩條切線,,切點分別為,,為的中點.(1)證明:軸;(2)直線是否恒過定點?若是,求出這個定點的坐標;若不是,請說明理由.22.(10分)為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當時培訓(xùn)有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計算能力,屬于中檔試題.2、B【解析】

因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!3、B【解析】

建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結(jié)果求參數(shù),屬于中檔題.4、B【解析】

利用某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.5、C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得.當a<1時,,所以函數(shù)f(x)在單調(diào)遞減,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當1≤a<e時,函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當1≤a<e時,滿足題意.當a時,函數(shù)f(x)在(0,1)單調(diào)遞增,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價轉(zhuǎn)化,找到了問題的突破口.6、D【解析】

確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.7、C【解析】

利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。8、B【解析】

先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.9、C【解析】

求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.10、B【解析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學(xué)生對這些知識的理解掌握水平.11、C【解析】

根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數(shù)的對稱性的應(yīng)用,屬于中檔題.12、D【解析】

用誘導(dǎo)公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.二、填空題:本題共4小題,每小題5分,共20分。13、01【解析】

根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點睛】本題考查了分段函數(shù)求值的簡單應(yīng)用,屬于基礎(chǔ)題.14、【解析】

算法的功能是求的值,根據(jù)輸出的值,分別求出當時和當時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當時,,可得:,或(舍去);當時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】

函數(shù)等價為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的單調(diào)性的判斷和運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.16、【解析】

分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設(shè),則.當時,;當時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因為關(guān)于的方程的兩根都大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.18、(1)(2)證明見解析【解析】

(1)由點可得,由,根據(jù)即可求解;(2)設(shè)直線的方程為,聯(lián)立可得,設(shè),由韋達定理可得,再根據(jù)直線的斜率公式求得;由點B與點Q關(guān)于原點對稱,可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線的方程為,聯(lián)立,可得,設(shè),則有,因為,所以,又因為點B與點Q關(guān)于原點對稱,所以,即,則有,由點在橢圓上,得,所以,所以,即,所以存在實數(shù),使成立【點睛】本題考查橢圓的標準方程,考查直線的斜率公式的應(yīng)用,考查運算能力.19、(1);(2).【解析】

(1)設(shè)等差數(shù)列的公差為,根據(jù)題意得出關(guān)于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調(diào)性的定義判斷數(shù)列中偶數(shù)項構(gòu)成的數(shù)列的單調(diào)性,由此能求出正實數(shù)的取值范圍.【詳解】(1)設(shè)等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個,得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列的通項公式的求法,考查正實數(shù)的取值范圍的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是中檔題.20、(1)證明見解析(2)證明見解析【解析】

(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開即可得證.【詳解】證明:(1),,,(當且僅當時取等號).(2),,,,,,,.【點睛】本題考查不等式的證明,考查基本不等式的運用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論