2025屆平涼市重點中學高三最后一卷數(shù)學試卷含解析_第1頁
2025屆平涼市重點中學高三最后一卷數(shù)學試卷含解析_第2頁
2025屆平涼市重點中學高三最后一卷數(shù)學試卷含解析_第3頁
2025屆平涼市重點中學高三最后一卷數(shù)學試卷含解析_第4頁
2025屆平涼市重點中學高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆平涼市重點中學高三最后一卷數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.2.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定3.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.4.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.105.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.7.定義在上的函數(shù)與其導函數(shù)的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數(shù)的單調遞減區(qū)間是()A. B. C. D.8.已知集合,,則()A. B.C.或 D.9.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.10.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q11.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列12.已知是定義在上的奇函數(shù),且當時,.若,則的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在和上均單調遞增,則實數(shù)的取值范圍為________.14.的展開式中,的系數(shù)為_______(用數(shù)字作答).15.已知數(shù)列的前項滿足,則______.16.設滿足約束條件,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值18.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.19.(12分)已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.20.(12分)隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等.其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:級數(shù)一級二級三級四級每月應納稅所得額(含稅)不超過3000元的部分超過3000元至12000元的部分超過12000元至25000元的部分超過25000元至35000元的部分稅率3102025(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應繳納的個稅金額為多少?(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領的相關資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據(jù)樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.21.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.22.(10分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.2、A【解析】

利用的坐標為,設直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎題3、D【解析】

如圖所示,設依次構成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.4、C【解析】

根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質,屬難題.5、D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.6、B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結果,要注意在哪一步退出循環(huán),是一道容易題.7、B【解析】

先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導函數(shù)的圖象,求出函數(shù)的導數(shù)為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點,但其導函數(shù)圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點,則其導函數(shù)圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數(shù)求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數(shù)的單調區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導函數(shù)的圖象,考查推理能力,屬于中等題.8、D【解析】

首先求出集合,再根據(jù)補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.9、A【解析】

先將函數(shù)解析式化簡為,結合題意可求得切點及其范圍,根據(jù)導數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質的綜合應用,由交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.10、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。11、D【解析】

由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯.故選:D【點睛】本題考查統(tǒng)計的知識,考查數(shù)據(jù)處理能力和應用意識,是基礎題12、B【解析】

利用函數(shù)奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數(shù),.當時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數(shù)奇偶性的應用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

化簡函數(shù),求出在上的單調遞增區(qū)間,然后根據(jù)在和上均單調遞增,列出不等式求解即可.【詳解】由知,當時,在和上單調遞增,在和上均單調遞增,,

,

的取值范圍為:.

故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質,關鍵是根據(jù)函數(shù)的單調性列出關于m的方程組,屬中檔題.14、60【解析】

根據(jù)二項式定理展開式通項,即可求得的系數(shù).【詳解】因為,所以,則所求項的系數(shù)為.故答案為:60【點睛】本題考查了二項展開式通項公式的應用,指定項系數(shù)的求法,屬于基礎題.15、【解析】

由已知寫出用代替的等式,兩式相減后可得結論,同時要注意的求解方法.【詳解】∵①,∴時,②,①-②得,∴,又,∴().故答案為:.【點睛】本題考查求數(shù)列通項公式,由已知條件.類比已知求的解題方法求解.16、【解析】

作出可行域,將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當時,z=0;當時將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點睛】本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)推導出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標原點,建立如圖所示空間坐標系,設,利用空間向量法表示出二面角的余弦值,當余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標原點,建立如圖所示空間坐標系,則,設,則平面的一個法向量為設平面的一個法向量為則,即,令,如圖二面角的平面角為銳角,設二面角為,則,時取得最大值,最大值為,則最小值為【點睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關系,得出和,由于底面,利用線面垂直的性質,得出,且,最后結合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以可設平面平面,又因為平面,所以.因為平面,平面,所以,從而得.因為底面,所以.因為,所以.因為,所以平面.綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,則,,,,所以,,,.設是平面的法向量,由取取,得.設是平面的法向量,由得取,得,所以,即的余弦值為.【點睛】本題考查線面垂直的判定和空間二面角的計算,還運用線面平行的性質、線面垂直的判定定理、點線面的位置關系、空間向量的坐標運算等,同時考查學生的空間想象能力和邏輯推理能力.19、(1)(2)存在,【解析】

由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項公式即可求出,進而求出;由題意得,,,兩式相減得,,據(jù)此可得,當時,,進而可得,即數(shù)列為常數(shù)列,進而可得,結合,得到關于的不等式,再由時,且為整數(shù)即可求出符合題意的的所有值.【詳解】因為數(shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項,以為公比的等比數(shù)列,所以,因為,所以.(2)由題意得,故,兩式相減得所以,當時,又因為所以當時,所以成立,所以當時,數(shù)列是常數(shù)列,所以因為當時,成立,所以,所以在中令,因為,所以可得,所以,由時,且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點睛】本題考查數(shù)列的新定義、等比數(shù)列的通項公式和數(shù)列遞推公式的運用;考查運算求解能力、邏輯推理能力和對新定義的理解能力;通過反復利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關鍵;屬于綜合型強、難度大型試題.20、(1)李某月應繳納的個稅金額為元,(2)分布列詳見解析,期望為1150元【解析】

(1)分段計算個人所得稅額;

(2)隨機變量X的所有可能的取值為990,1190,1390,1590,分別求出各值對應的概率,列出分布列,求期望即可.【詳解】解:(1)李某月應納稅所得額(含稅)為:29600?5000?1000?2000=21600元

不超過3000的部分稅額為3000×3%=90元

超過3000元至12000元的部分稅額為9000×10%=900元,

超過12000元至25000元的部分稅額為9600×20%=1920元

所以李某月應繳納的個稅金額為90+900+1920=2910元,

(2)有一個孩子需要贍養(yǎng)老人應納稅所得額(含稅)為:20000?5000?1000?2000=12000元,

月應繳納的個稅金額為:90+900=990元

有一個孩子不需要贍養(yǎng)老人應納稅所得額(含稅)為:20000?5000?1000=14000元,

月應繳納的個稅金額為:90+900+400=1390元;

沒有孩子需要贍養(yǎng)老人應納稅所得額(含稅)為:20000?5000?2000=13000元,

月應繳納的個稅金額為:90+900+200=1190元;

沒有孩子不需要贍養(yǎng)老人應納稅所得額(含稅)為:20000?5000=15000元,

月應繳納的個稅金額為:90+900+600=1590元;

所以隨機變量X的分布列為:990119013

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論