版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省楚雄彝族自治州大姚縣第一中學高三第二次模擬考試數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.本次模擬考試結束后,班級要排一張語文、數學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種2.若直線的傾斜角為,則的值為()A. B. C. D.3.的內角的對邊分別為,若,則內角()A. B. C. D.4.已知函數,若方程恰有兩個不同實根,則正數m的取值范圍為()A. B.C. D.5.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種6.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或7.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.68.已知m為實數,直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.已知函數fx=sinωx+π6+A.16,13 B.110.已知某口袋中有3個白球和個黑球(),現從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數是.若,則=()A. B.1 C. D.211.已知函數的部分圖象如圖所示,則()A. B. C. D.12.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值為________.14.已知向量,,且,則實數m的值是________.15.下圖是一個算法流程圖,則輸出的的值為__________.16.設滿足約束條件,則目標函數的最小值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設二面角的大小為,求的值.18.(12分)選修4-5:不等式選講已知函數.(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數的值.19.(12分)已知關于的不等式有解.(1)求實數的最大值;(2)若,,均為正實數,且滿足.證明:.20.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.21.(12分)已知數列中,(實數為常數),是其前項和,且數列是等比數列,恰為與的等比中項.(1)證明:數列是等差數列;(2)求數列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.22.(10分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用分步計數原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題2、B【解析】
根據題意可得:,所求式子利用二倍角的正弦函數公式化簡,再利用同角三角函數間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數公式,同角三角函數間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.3、C【解析】
由正弦定理化邊為角,由三角函數恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.4、D【解析】
當時,函數周期為,畫出函數圖像,如圖所示,方程兩個不同實根,即函數和有圖像兩個交點,計算,,根據圖像得到答案.【詳解】當時,,故函數周期為,畫出函數圖像,如圖所示:方程,即,即函數和有兩個交點.,,故,,,,.根據圖像知:.故選:.【點睛】本題考查了函數的零點問題,確定函數周期畫出函數圖像是解題的關鍵.5、B【解析】
把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.6、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.7、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.8、A【解析】
根據直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數的值后要代入檢驗看兩直線是否重合.9、A【解析】
將fx整理為3sinωx+π3,根據x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數的值域求解參數范圍的問題,關鍵是能夠結合正弦型函數的圖象求得角的范圍的上下限,從而得到關于參數的不等式.10、B【解析】由題意或4,則,故選B.11、A【解析】
先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.12、C【解析】
根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
畫出不等式組表示的平面區(qū)域,數形結合,即可容易求得目標函數的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數形結合思想,屬基礎題.14、1【解析】
根據即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數量積的坐標運算.15、3【解析】
分析程序中各變量、各語句的作用,根據流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.16、【解析】
根據滿足約束條件,畫出可行域,將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數形結合的思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點D,連接BD,則.以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,則,,,,.設平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時,關鍵是點的坐標要寫準確,本題是一道中檔題.18、(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數的形式,分類討論,分別求得解集,綜合可得結論.(2)把f(x)去絕對值寫成分段函數,畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數的最值問題,體現了分類討論的數學思想,屬于中檔題19、(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關于的不等式有解等價于,(ⅰ)當時,上述不等式轉化為,解得,(ⅱ)當時,上述不等式轉化為,解得,綜上所述,實數的取值范圍為,則實數的最大值為3,即.(2)證明:根據(1)求解知,所以,又∵,,,,,當且僅當時,等號成立,即,∴,所以,.【點睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.20、(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據同角的三角函數的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.21、(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項公式和前n項和的關系求解,(2)由(1)知,.設等比數列的公比為,所以,再根據恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數列是等差數列,(2)由(1)知,.設等比數列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當時,.當時,,∴對任意,都有,【點睛】本題主要考查數列的通項公式和前n項和的關系,等差數列,等比數列的定義和性質以及數列放縮的方法,還考查了轉化化歸的思想和運算求解的能力,屬于難題,22、(1)見解析;(2)【解析】
(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點E為中點;(2)求出面ADE的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)評課程設計感想
- 鋼混組合梁課程設計算例
- 雷達課課程設計書模板
- 插床的課程設計
- 武漢小學智能課程設計
- 蟲兒飛聲樂課程設計
- 重復保險課程設計
- 小學教師普通話培訓的課程設計心得體會
- 蓮蓬研學課程設計
- 輪胎表面課程設計
- mil-std-1916抽樣標準(中文版)
- 2024年安徽省合肥市瑤海區(qū)中考語文一模試卷
- 單位車輛變更名稱的委托書
- 粉塵外協(xié)單位清理協(xié)議書
- 2023年12月首都醫(yī)科大學附屬北京中醫(yī)醫(yī)院面向應屆生招考聘用筆試近6年高頻考題難、易錯點薈萃答案帶詳解附后
- 茶室經營方案
- 軍隊文職崗位述職報告
- 小學數學六年級解方程練習300題及答案
- 電抗器噪聲控制與減振技術
- 中醫(yī)健康宣教手冊
- 2024年江蘇揚州市高郵市國有企業(yè)招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論