版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
NobelPrizehighlightsneuralnetworks’physicsroots罡
Theroadtothemodernmachine-learningmarvelswaspavedwithideasfromstatisticalmechanicsandcollectivephenomena.
JohannaL.Miller
PhysicsToday77(12),12–16(2024);
/10.1063/pt.qjmx.snxw
恩
View
Online
CrossMark
5
Export
Citation
24December202423:32:07
SEARCH&DISCOVERY
NobelPrizehighlightsneuralnetworks’
physicsroots
Theroadtothemodern
MATTRASPANTI/PRINCETONUNIVERSITY
JOHNNYGUATTO/UNIVERSITYOFTORONTO
machine-learningmarvelswaspavedwithideasfromstatisticalmechanicsandcollectivephenomena.
“G
arbagein,garbageout.”According
totheoldadagefromcomputersci-
JohnHop?eld
Geo?reyHinton
onthoseideastodevelopthealgorithmsusedbyneural-networkmodelstoday.
Glassymemory
Itwasfarfromobvious,atfirst,thatneuralnetworkswouldevergrowtobesopowerful.Asrecentlyas2011,theflashiestmilestonesinAIwerebeingachievedbyanotherapproachentirely.IBMWatson,thecomputerthatbeatKenJenningsandBradRutteratJeop-ardy!,wasnotaneuralnetwork:Itwasexplicitlyprogrammedwithrulesforlanguageprocessing,informationre-trieval,andlogicalreasoning.AndmanyresearchersthoughtthatwasthewaytogotocreatepracticalAImachines.
Incontrast,theearlyworkonneuralnetworkswascuriosity-drivenresearch,inspiredmorebyrealbrainsthanbycomputersandtheirapplications.Butthenatureoftheinterdisciplinaryconnectionwassubtle.“ThequestionsHopfieldad-dressedarenotunrelatedtothingsneuro-scientistswereworriedabout,”saysPrinceton’sWilliamBialek.“Butthisisn’tabout‘applicationofphysicstoX’;rather,it’saboutintroducingawholepointofviewthatjustdidn’texistbefore.”
Bythe1980s,neuroscientistshadknownfordecadesthatthebrainiscom-posedofneurons,whichareconnectedtooneanotherviasynapsesandalter-natebetweenperiodsofhighandlowelectricalactivity(colloquially,“firing”and“notfiring”),andtheywerestudy-ingsystemsofafewneuronstounder-standhowoneneuron’sfiringaffected
thoseitwasconnectedto.“Somethoughtofneuronsintermsoflogicgates,likeinelectronics,”saysStanfordUniversity’sJayMcClelland.
Inalandmark1982paper,Hopfieldtookadifferentapproach.1Inphysics,heargued,manyimportantpropertiesoflarge-scalesystemsareindependentofsmall-scaledetails.Allmaterialscon-ductsoundwaves,forexample,irrespec-tiveofexactlyhowtheiratomsormole-culesinteract.Microscopicforcesmightaffectthespeedofsoundorotheracous-ticproperties,butstudyingtheforcesamongthreeorfouratomsrevealslittleabouthowtheconceptofsoundwavesemergesinthefirstplace.
Sohewrotedownamodelofanet-workofneurons,withaneyemoreto-wardcomputationalandmathematicalsimplicitythanneurobiologicalrealism.Themodel,nowknownasaHopfieldnetwork,issketchedinfigure1.(Thefig-ureshowsafive-neuronnetworkforeaseofillustration;Hopfieldwassimulatingnetworksof30to100neurons.)Eachneuroncanbeinstate1,forfiring,orstate0,fornotfiring.Andeachneuronwasconnectedtoalltheothersviacouplingconstantsthatcouldhaveanypositiveornegativevalue,dependingonwhethereachsynapsefavorsordisfavorstheneu-ronstobothbefiringatthesametime.
That’sexactlythesameformasaspinglass,afamouslythornysystemfromcondensed-matterphysics.(SeePhysicsToday,December2021,page17.)Unlikeaferromagnet,inwhichthecouplingsareall
ence,whatyougetfromacomputerisnobetterthanwhatyougiveit.Anditwouldseemtoimplythatbecausecom-puterscan’tthinkforthemselves,theycanneverdoanythingmoresophisti-catedthanwhatthey’vebeenexplicitlyinstructedto.
24December202423:32:07
Butthatlastpartappearstobenolongertrue.Neuralnetworks—computingarchitectures,inspiredbythehumanbrain,inwhichsignalsarepassedamongnodescalledartificialneurons—have,inrecentyears,beenproducingwaveafterwaveofstunningresults.(See,forexam-ple,page17ofthisissue.)Individualartificialneuronsperformonlythemostelementaryofcomputations.Butwhenbroughttogetherinlargeenoughnum-bers,andwhenfedonenoughtrainingdata,theyacquirecapabilitiesuncannilyreminiscentofhumanintelligence,seem-inglyoutofnowhere.
Physicistsarenostrangerstotheideaofunexpectedphenomenaemergingfromsimplerbuildingblocks.Afewel-ementaryparticlesandtherulesoftheirinteractionscombinetoyieldalmostthewholeofthevisibleworld:super-conductors,plasmas,andeverythinginbetween.Whyshouldn’taphysicsap-proachtoemergentcomplexitybeap-pliedtoneuralnetworkstoo?
Indeed,itwas—andstillis—asshow-casedbythisyear’sNobelPrizeinPhys-ics,whichgoestoPrincetonUniversity’sJohnHopfieldandtheUniversityofTo-ronto’sGeoffreyHinton.Beginningintheearly1980s,Hopfieldlaidthecon-ceptualfoundationsforphysics-basedthinkingaboutbrain-inspiredinforma-tionprocessing;Hintonwasatthefore-frontofthedecades-longefforttobuild
12PHYSICSTODAY|DECEMBER2024
10
1
00
FIGURE1.AHOPFIELDNETWORK,formallyequivalenttoaspinglass,functionsasanassociativememory:Whenpresentedwithapartiallyrecalledstate,itusesanenergy-loweringalgorithmtofillinthegaps.Thememoriesarestoredinthestrengthsofthe
connectionsamongthenodes.WhenJohnHopfieldshowedthatwiththerightcombinationofconnectionweights,thenetworkcouldstoremanymemoriessimultaneously,hesetthestageforphysics-basedthinkingaboutneuralnetworks.(FigurebyFreddiePagani;rabbitphotobyJMLigeroLoarte/WikimediaCommons/CCBY3.0.)
positiveandthesystemhasacleargroundstatewithallitsspinsaligned,aspinglassalmostalwayslacksastatethatsatisfiesallitsspins’energeticpreferencessimul-taneously.Itsenergylandscapeiscom-plex,withmanylocalenergyminima.
Hopfieldarguedthatthelandscapecouldserveasamemory,witheachoftheenergy-minimizingconfigurationsservingasastatetoberemembered.Andhepresentedanelegantwayofset-tingtheconnectionstrengths—inspiredbywhathappensatrealsynapses—sothatthememorywouldstoreanyde-siredcollectionofstates.
ButtheHopfieldnetworkisfunda-mentallydifferentfromanordinarycom-putermemory.Inacomputer,eachitemofdatatobestoredisencodedasastringofonesandzerosinaspecificplace,andit’srecalledbygoingbacktothatplaceandreadingoutthestring.InaHopfieldnetwork,alltheitemsarestoredsimulta-neouslyinthecouplingstrengthsofthewholenetwork.Andtheycanberecalledassociatively,bygivingthenetworkastartingpointthatsharesjustafewfea-tureswithoneoftherememberedstatesandallowingittorelaxtothenearestenergyminimum.Moreoftenthannot,itwillrecallthedesiredmemory.(SeealsothearticlesbyHaimSompolinsky,PhysicsToday,December1988,page70,andJohnHopfield,PhysicsToday,Feb-ruary1994,page40.)
Thoseareboththingsthathappeninrealbrains.“Itwasknownexperimen-tallyinhigheranimalsthatbrainactivitywaswellspreadout,anditinvolved
manyneurons,”saysHopfield.Andas-sociativememoryissomethingyou’vedirectlyexperiencedifyou’veeverre-calledasongyou’veheardbeforeafterhearingonerandomline.
Hopfield’smodelwasavastsimplifica-tionofarealbrain.Realneuronsarein-trinsicallydynamic,notcharacterizedbystaticstates,andrealneuronconnectionsarenotsymmetric.Butinaway,thosedifferenceswerefeatures,notbugs:They
showedthatcollective,associativemem-orywasanemergentlarge-scalephenom-enon,robustagainstsmall-scaledetails.
Learninghowtolearn
“NotonlyisHopfieldaverygoodphysi-cist,buttheHopfieldmodelisexcellentphysicsbyitself,”saysLeovanHemmen,oftheTechnicalUniversityofMunich.Still,its1982formulationleftmanyin-triguingopenquestions.Hopfieldhadfocusedonsimulationstoshowhowthesystemrelaxestoanenergyminimum;wouldthemodeladmitamorerobustanalyticaltreatment?Howmanystatescouldthemodelremember,andwhatwouldhappenifitwasoverloaded?Weretherebetterwaysofsettingthecon-nectionstrengthsthantheoneHopfieldproposed?
Thosequestions,andothers,weretakenonbyaflurryofphysics-trainedresearcherswhowereinspiredbyHopfield’sworkandenteredtheneural-networkfieldoverthe1980s.“Physicistsareversatile,curious,andarrogant—inapositiveway,”saysEytanDomany,oftheWeizmannInstituteofScienceinIsrael.
“They’rewillingtostudythoroughlyandthentackleaproblemthey’veneverseenbefore,ifit’sinteresting.Andeveryoneisexcitedaboutunderstandingthebrain.”
24December202423:32:07
AnotherpartoftheappealwasinhowHopfieldhadtakenatraditionalphysicsproblemandturneditonitshead.“Inmostenergy-landscapeprob-lems,you’regiventhemicroscopicinter-actions,andyouask,Whatisthegroundstate?Whatarethelocalminima?Whatistheentirelandscape?”saysHaimSompolinsky,oftheHebrewUniversityofJerusalem.“The1982paperdidtheopposite.Westartwiththegroundstatesthatwewant:thememories.Andweask,Whatarethemicroscopicinteractionsthatwillsupportthoseasgroundstates?”
Fromthere,itwasashortconceptualleaptoask,Whatifthecouplingstrengthsthemselvescanevolveontheirownen-ergylandscape?Thatis,insteadofbeingpreprogrammedwithparameterstoen-codespecificmemories,canthesystemimproveitselfbylearning?
Machinelearninginneuralnetworkshadbeentriedbefore.Theperceptron—aneural-network-likedevicethatsortedim-agesintosimplecategories,suchascirclesandsquares—datesbacktothe1950s.Whenprovidedwithaseriesoftrainingimagesandasimplealgorithmforupdat-ingitsconnectionsbetweenneurons,itcouldeventuallylearntocorrectlyclassifyevenimagesithadn’tseenbefore.
Buttheperceptrondidn’talwayswork:Withthewaythenetworkwasstructured,sometimestherewasn’tanywayofsettingtheconnectionstrengths
DECEMBER2024|PHYSICSTODAY13
SEARCH&DISCOVERY
3
10
0
1
01
A
3
3
3
3
3
FIGURE2.ABOLTZMANNMACHINEextendstheHopfieldnetworkintwoways:Itaugmentsthenetworktoincludehidden
nodes(showninthecenterofthenetworkingray)thataren’tinvolvedinencodingthedata,anditoperatesatanonzeroeffectivetemperature,sothattheentirespaceofconfigurationscanbecharacterizedbyaBoltzmannprobabilitydistribution.Geoffrey
HintonandcolleaguesdevelopedawaytotraintheBoltzmannmachineasagenerativemodel:Whenpresentedwithseveralinputsthatallsharedacommonfeature,itproducedmoreitemsofthesametype.(FigurebyFreddiePagani.)
toperformthedesiredclassification.“Whenthathappened,youcoulditer-ateforever,andthealgorithmwouldneverconverge,”saysvanHemmen.“Thatwasabigshock.”Withoutaguid-ingprincipletochartapathforward,thefieldhadstalled.
Findingcommonground
Hintondidn’tcometoneuralnetworksfromabackgroundinphysics.ButhiscollaboratorTerrenceSejnowski—who’dearnedhisPhDunderHopfieldin1978—did.Together,theyextendedtheHop-fieldnetworkintosomethingtheycalledtheBoltzmannmachine,whichvastlyextendedthemodel’scapabilitiesbyex-plicitlydrawingonconceptsfromstatis-ticalphysics.2
InHopfield’s1982simulations,he’deffectivelyconsideredthespin-glassnet-workatzerotemperature:Heallowedthesystemtoevolveitsstateonlyinwaysthatwouldloweritsoverallenergy.Sowhateverthestartingstate,itrolledintoanearbylocalenergyminimumandstayedthere.
“TerryandIimmediatelystartedthinkingaboutthestochasticversion,withnonzerotemperature,”saysHinton.In-steadofadeterministicenergy-loweringrule,theyusedaMonteCarloalgorithmthatallowedthesystemtooccasionallyjumpintoastateofhigherenergy.Givenenoughtime,astochasticsimulationofthenetworkwouldexploretheentireen-ergylandscape,anditwouldsettleintoaBoltzmannprobabilitydistribution,withallthelow-energystates—regardlessof
14PHYSICSTODAY|DECEMBER2024
whetherthey’relocalenergyminima—representedwithhighprobability.
“Andin1983,wediscoveredareallybeautifulwaytodolearning,”Hintonsays.Whenthenetworkwassuppliedwithtrainingdata,theyiterativelyup-datedtheconnectionstrengthssothatthedatastateshadhighprobabilityintheBoltzmanndistribution.3Moreover,whentheinputdatahadsomethingincommon—liketheimagesofthenu-meral3infigure2—thenotherhigh-probabilitystateswouldsharethesamecommonfeatures.
Thekeyingredientforthatkindofcommonalityfindingwasaugmentingthenetworktoincludemorenodesthanjusttheonesthatencodethedata.Thosehiddennodes,representedingrayinfigure2,allowthesystemtocapturehigher-levelcorrelationsamongthedata.
Inprinciple,theBoltzmannmachinecouldbeusedformachinerecognitionofhandwritingorfordistinguishingnormalfromemergencyconditionsinafacilitysuchasapowerplant.Unfortu-nately,theBoltzmannmachine’slearn-ingalgorithmisprohibitivelyslowformostpracticalapplications.Itremainedatopicofacademicresearch,butitdidn’tfindmuchreal-worlduse—untilitmadeasurprisingreappearanceyearslater.
Howthenetworkswork
Aroundthesametime,HintonwasworkingwithcognitivescientistDavidRumelhartonanotherlearningalgo-rithm,whichwouldbecomethesecretsauceofalmostalloftoday’sneural
24December202423:32:07
networks:backpropagation.4Thealgo-rithmwasdevelopedforadifferentkindofnetworkarchitecture,calledafeed-forwardnetwork,showninfigure3.IncontrasttotheHopfieldnetworkandBoltzmannmachine,withtheirbidirec-tionalconnectionsamongnodes,signalsinafeedforwardnetworkflowinonedirectiononly:fromalayerofinputneu-rons,throughsomenumberofhiddenlayers,totheoutput.Asimilararchitec-turehadbeenusedinthemultilayerperceptron.
Supposeyouwanttotrainafeed-forwardnetworktoclassifyimages.Yougiveitapictureofarabbit,andyouwantittoproducetheoutputmessage“Thisisarabbit.”Butsomethingiswrong,andinsteadyougettheoutput“Thisisaturtle.”Howdoyougetthingsbackontrack?Thenetworkmighthavedozensorhundreds—ortoday,trillions—ofinter-nodeconnectionsthatcontributetotheoutput,eachwithitsownnumericalweight.There’sadizzyingnumberofwaystoadjustthemalltotrytogettheoutputyouwant.
Backpropagationsolvesthatproblemthroughgradientdescent:First,youde-fineanerrorfunctionthatquantifieshowfartheoutputyougotisfromtheoutputyouwant.Then,calculatethepartialde-rivativesoftheerrorfunctionwithre-specttoeachoftheinternodalweights—asimplematterofrepeatedlyapplyingcalculus’schainrule.Finally,usethosederivativestoadjusttheweightsinawaythatdecreasestheerror.
Itmighttakemanyrepetitionstoget
0.3
0.4
Rabbit
0.1
0.5
0.9
0.8
0.7
0.6
0.6
Writeahaikuaboutarabbit
Softearsinthegrass,
Hoppingthroughthemorningdew,Nature’squietjoy.
0.5
0.9
0.2
FIGURE3.AFEEDFORWARDNETWORK,trainedbybackpropagation,isthebasicstructureoftheneuralnetworksusedtoday.
Bypassingnumericalsignalsfromaninputlayerthroughhiddenlayerstoanoutputlayer,feedforwardnetworksperformfunctionsthatincludeimageclassificationandtextgeneration.(FigurebyFreddiePagani;rabbitphotobyJMLigeroLoarte/Wikimedia
Commons/CCBY3.0;haikugeneratedbyGPT-4,OpenAI,22October2024.)
theerrorcloseenoughtozero—andyou’llwanttomakesurethatthenetworkgivestherightoutputformanyinputs,notjustone.Butthosebasicstepsareusedtotrainallkindsofnetworks,includingproof-of-conceptimageclassifiersandlargelan-guagemodels,suchasChatGPT.
Gradientdescentisintuitivelyele-gant,anditwasn’tconceptuallynew.“Butseveralelementshadtocometo-gethertogetthebackpropagationideatowork,”saysMcClelland.“Foronething,youcan’ttakethederivativeofsome-thingifit’snotdifferentiable.”Realneu-ronsoperatemoreorlessindiscreteonandoffstates,andtheoriginalHopfieldnetwork,Boltzmannmachine,andper-ceptronwerealldiscretemodels.Forbackpropagationtowork,itwasneces-sarytoshifttoamodelinwhichthenodestatescantakeacontinuumofvalues.Butthosecontinuous-valuednetworkshadalreadybeenintroduced,includingina1984paperbyHopfield.5
Asecondinnovationhadtowaitforlonger.Backpropagationworkedwellfornetworkswithjustacoupleoflayers.Butwhenthelayercountapproachedfiveormore—atriflingnumberbyto-day’sstandards—someofthepartialde-rivativesweresosmallthatthetrainingtookanimpracticallylongtime.
Intheearly2000s,Hintonfoundasolution,anditinvolvedhisoldBoltz-mannmachine—orrather,aso-calledrestrictedversionofit,inwhichtheonlyconnectionsarethosebetweenonehid-denneuronandonevisible(non-hidden)neuron.6RestrictedBoltzmannmachines(RBMs)areeasytocomputationally
model,becauseeachgroupofneurons—visibleandhidden—couldbeupdatedallatonce,andtheconnectionweightscouldallbeadjustedtogetherinasinglestep.Hinton’sideawastoisolatepairsofsuccessivelayersinafeedforwardnetwork,trainthemasiftheywereRBMstogettheweightsapproximatelyright,andthenfine-tunethewholenetworkusingbackpropagation.
“Itwaskindofahackything,butitworked,andpeoplegotveryexcited,”saysGrahamTaylor,oftheUniversityofGuelphinCanada,whoearnedhisPhDunderHintonin2009.“Itwasnowpos-sibletotrainnetworkswithfive,six,sevenlayers.Peoplecalledthem‘deep’networks,andtheystartedusingtheterm‘deeplearning.’”
TheRBMhackwasn’tusedforlong.Computingpowerwasadvancingsoquickly—particularlywiththerealizationthatgraphicsprocessingunits(GPUs)wereideallysuitedtothecomputationsneededforneuralnetworks—thatwithinafewyears,itwaspossibletodoback-propagationonevenlargernetworksfromacoldstart,withnoRBMsrequired. “IfRBMlearninghadn’thappened,wouldGPUshavecomealonganyway?”asksTaylor.“That’sarguable.Buttheex-citementaroundRBMschangedtheland-scape:Itledtotherecruitmentandtrain-ingofnewstudentsandtonewwaysofthinking.Ithinkattheveryleast,itwouldn’thavehappenedthesameway.”
What’snewisold
Today’snetworksusehundredsorthou-sandsoflayers,buttheirformislittle
24December202423:32:07
changedfromwhatHintondescribed.“Ilearnedaboutneuralnetworksfrombooksfromthe1980s,”saysBernhardMehlig,oftheUniversityofGothenburginSweden.“WhenIstartedteachingit,Irealizedthatnotmuchisnew.It’sessen-tiallytheoldstuff.”Mehlignotesthatinatextbookhewrote,publishedin2021,part1of3isaboutHopfield,andpart2isaboutHinton.
Neuralnetworksnowinfluenceavastnumberofhumanendeavors:They’reinvolvedindataanalysis,websearches,andcreatinggraphics.Aretheyintelli-gent?It’seasytodismissthequestionoutofhand.“Therehavealwaysbeenlotsofthingsthatmachinescandobetterthanhumans,”saystheUniversityofMaryland’sSankarDasSarma.“Thathasnothingtodowithbecominghuman.ChatGPTisfabulouslygoodatsomethings,butatmanyothers,it’snotevenasgoodasatwo-year-oldbaby.”
Anillustrativecomparisonisthevastdatagapbetweentoday’sneuralnet-worksandhumans.7Aliterate20-year-oldmayhavereadandheardafewhun-dredmillionwordsinlifesofar.Largelanguagemodels,incontrast,aretrainedonhundredsofbillionsofwords,anum-berthatgrowswitheachnewrelease.WhenyouaccountforthefactthatChatGPThastheadvantageofathousandtimesasmuchlifeexperienceasyoudo,itsabilitiesmayseemlesslikeintelli-gence.Butperhapsitdoesn’tmatterifAIfumbleswithsometasksifit’sgoodattherightcombinationofothers.
HintonandHopfieldhavebothspo-kenaboutthedangersofuncheckedAI.
DECEMBER2024|PHYSICSTODAY15
SEARCH&DISCOVERY
Amongtheirargumentsistheideathatoncemachinesbecomecapableofbreak-ingupgoalsintosubgoals,they’llquicklydeducethattheycanmakealmostanytaskeasierforthemselvesbyconsolidat-ingtheirownpower.Andbecauseneu-ralnetworksareoftentaskedwithwrit-ingcodeforothercomputers,stoppingthedamageisnotassimpleaspullingtheplugonasinglemachine.
“Therearealsoimminentrisksthatwe’refacingrightnow,”saysMehlig.“Therearecomputer-writtentextsandfakeimagesthatarebeingusedtotrickpeopleandinfluenceelections.Ithinkthatbytalkingaboutcomputerstakingovertheworld,peopletaketheimmi-nentdangerslessseriously.”
Whatcanphysicistsdo?
Muchoftheuneasestemsfromthefactthatsolittleisknownaboutwhatneu-ralnetworksarereallydoing:Howdobillionsofmatrixmultiplicationsadduptotheabilitytofindproteinstruc-turesorwritepoetry?“Peopleatthebigcompaniesaremoreinterestedinpro-ducingrevenue,notunderstanding,”saysDasSarma.“Understandingtakeslonger.Thejoboftheoristsistounder-standphenomena,andthisisahugephysicalphenomenon,waitingtobeunderstoodbyus.Physicistsshouldbeinterestedinthis.”
“It’shardnottobeexcitedbywhat’sgoingon,andit’shardnottonoticethatwedon’tunderstand,”saysBialek.“Ifyouwanttosaythatthingsareemergent,what’stheorderparameter,andwhatisitthat’semerged?Physicshasawayof
makingthatquestionmoreprecise.Willthatapproachyieldinsight?We’llsee.”
Fornow,thebiggestquestionsarestilloverwhelming.“Ifthereweresome-thingobviousthatcametomind,therewouldbeahordeofpeopletryingtosolveit,”saysHopfield.“Butthereisn’tahordeofpeopleworkingonthis,be-causenobodyknowswheretostart.”
Butafewsmaller-scalequestionsaremoretractable.Forexample,whydoesbackpropagationsoreliablyreducethenetworkerrortonearzero,ratherthangettingstuckinhigh-lyinglocalminimaliketheHopfieldnetworkdoes?“TherewasabeautifulpieceofworkonthisafewyearsagobySuryaGanguliatStan-ford,”saysSaraSolla,ofNorthwesternUniversity.“Hefoundthatmosthigh-lyingminimaarereallysaddlepoints:It’saminimuminmanydimensions,butthere’salwaysoneinwhichit’snot.Soifyoukeepkicking,youeventuallyfindyourwayout.”
Whenphysics-trained
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度體育賽事運營管理場規(guī)則與格式規(guī)范3篇
- 二零二四年度一致行動人文化旅游產業(yè)合作協(xié)議合同3篇
- 2025年水電安裝工程設備采購與安裝合同6篇
- 2025賓館與旅游公司聯(lián)合運營客房租賃合同范本2篇
- 2024物流企業(yè)稅收優(yōu)惠適用合同
- 2025年度充電樁充電樁項目融資與投資合同3篇
- 2025廠房買賣合同模板:工業(yè)地產投資合作框架3篇
- 2025年度龍門吊拆除設備再利用及資源化利用合同范本4篇
- 2025年度裝飾藝術玻璃定制銷售合同3篇
- 二零二四年倉儲物流中心停車場租賃及倉儲服務合同3篇
- 公司SWOT分析表模板
- 小學預防流行性感冒應急預案
- 肺癌術后出血的觀察及護理
- 聲紋識別簡介
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設-第1篇
- 基于Android的天氣預報系統(tǒng)的設計與實現(xiàn)
- 沖鋒舟駕駛培訓課件
- 美術家協(xié)會會員申請表
- 聚合收款服務流程
- 中石化浙江石油分公司中石化溫州靈昆油庫及配套工程項目環(huán)境影響報告書
- 搞笑朗誦我愛上班臺詞
評論
0/150
提交評論