版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省潛山市第二中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在雙曲線的右支上,且點(diǎn)不共線.若的周長(zhǎng)的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.2.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.3.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過下面的隨機(jī)模擬方法來估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長(zhǎng)的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.5.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.636.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.7.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該??忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達(dá)線人數(shù)減少C.與2016年相比,2019年二本達(dá)線人數(shù)增加了0.3倍D.2016年與2019年藝體達(dá)線人數(shù)相同8.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.10.對(duì)于函數(shù),若滿足,則稱為函數(shù)的一對(duì)“線性對(duì)稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱點(diǎn)”,則的最大值為()A. B. C. D.11.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.12.已知向量,夾角為,,,則()A.2 B.4 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正項(xiàng)等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時(shí)的值為_____14.已知,,分別為內(nèi)角,,的對(duì)邊,,,,則的面積為__________.15.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時(shí),三棱錐的外接球的表面積為______.16.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)設(shè),若存在兩個(gè)極值點(diǎn),,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對(duì)數(shù)的底數(shù)).18.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個(gè)特征向量.19.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對(duì)稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.21.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.2、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).3、C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點(diǎn)睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.4、B【解析】
先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長(zhǎng),則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.5、D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)?,所以,所以,所以?shù)列是等比數(shù)列,又因?yàn)?,所以?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.6、C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.7、A【解析】
設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡(jiǎn)單的計(jì)算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯(cuò)誤;2019年二本達(dá)線人數(shù),2016年二本達(dá)線人數(shù),增加了倍,故C錯(cuò)誤;2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),故D錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識(shí)圖的能力,是一道較為簡(jiǎn)單的統(tǒng)計(jì)類的題目.8、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).9、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡(jiǎn)即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.10、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對(duì)稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.11、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.12、A【解析】
根據(jù)模長(zhǎng)計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長(zhǎng)的求解,屬綜合基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
先由題意列出關(guān)于的方程,求得的通項(xiàng)公式,再表示出即可求解.【詳解】解:設(shè)公比為,且,時(shí),上式有最小值,故答案為:2.【點(diǎn)睛】本題考查等比數(shù)列、等差數(shù)列的有關(guān)性質(zhì)以及等比數(shù)列求積、求最值的有關(guān)運(yùn)算,中檔題.14、【解析】
根據(jù)題意,利用余弦定理求得,再運(yùn)用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點(diǎn)睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計(jì)算能力.15、【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長(zhǎng),即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長(zhǎng)度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點(diǎn)作面,垂足為,過點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時(shí),,即.∴三點(diǎn)共線.設(shè)三棱錐的外接球的球心為,半徑為.過點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.16、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時(shí),恒成立,在上單調(diào)增,,,.(ii)當(dāng)時(shí),,故不滿足題意.綜上所述,【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.18、特征值為1,特征向量為.【解析】
設(shè)出矩陣M結(jié)合矩陣運(yùn)算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個(gè)特征向量.【詳解】設(shè)矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個(gè)特征向量為.【點(diǎn)睛】本題主要考查矩陣的運(yùn)算及特征量的求解,矩陣運(yùn)算的關(guān)鍵是明確其運(yùn)算規(guī)則,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).19、(1)證明見解析,;(2)【解析】
(1)利用,推出,然后利用等差數(shù)列的通項(xiàng)公式,即可求解;(2)由(1)知,利用裂項(xiàng)法,即可求解數(shù)列的前n項(xiàng)和.【詳解】(1)由題意,數(shù)列滿足且可得,即,所以數(shù)列是公差,首項(xiàng)的等差數(shù)列,故,所以.(2)由(1)知,所以數(shù)列的前n項(xiàng)和:==【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,以及“裂項(xiàng)法”求解數(shù)列的前n項(xiàng)和,其中解答中熟記等差數(shù)列的定義和通項(xiàng)公式,合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.20、(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據(jù)直線關(guān)于直線對(duì)稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡(jiǎn)后得到.【詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對(duì)稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)?,所以,,由題意,解得.(2)因?yàn)?,所?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)?,所以,因?yàn)?,所以存在,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時(shí),,即時(shí),.【點(diǎn)睛】本小題考查函數(shù)圖象的對(duì)稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識(shí);考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識(shí).21、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長(zhǎng),得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 從寶潔的成功看企業(yè)戰(zhàn)略管理的重要性
- 農(nóng)產(chǎn)品跨境電商營(yíng)銷策略
- 以樂啟智家庭中的音樂啟蒙實(shí)踐與反思
- 從教育角度看小學(xué)生閱讀習(xí)慣的培養(yǎng)
- 創(chuàng)新型學(xué)?;A(chǔ)設(shè)施設(shè)計(jì)與管理案例
- 2025訂購(gòu)物品合同糾紛上訴狀
- 創(chuàng)新醫(yī)療技術(shù)下的高血壓早期識(shí)別及預(yù)防教育探討研討會(huì)重點(diǎn)指引
- 2025林地承包的合同范本
- 2024山東核子及核輻射測(cè)量?jī)x器制造市場(chǎng)前景及投資研究報(bào)告
- 2025產(chǎn)品銷售合同
- 2024年河北中考語文試題及答案
- HG/T 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范(正式版)
- 偏微分方程智慧樹知到期末考試答案章節(jié)答案2024年山東大學(xué)(威海)
- 村集體經(jīng)濟(jì)入股分紅協(xié)議書
- 新時(shí)代大學(xué)生勞動(dòng)教育智慧樹知到期末考試答案章節(jié)答案2024年黑龍江農(nóng)業(yè)經(jīng)濟(jì)職業(yè)學(xué)院
- MOOC 計(jì)量經(jīng)濟(jì)學(xué)-西南財(cái)經(jīng)大學(xué) 中國(guó)大學(xué)慕課答案
- MOOC 高等數(shù)學(xué)(上)-西北工業(yè)大學(xué) 中國(guó)大學(xué)慕課答案
- 毛澤東思想概論智慧樹知到期末考試答案2024年
- 中醫(yī)診所消防應(yīng)急預(yù)案
- 2024版國(guó)開電大法學(xué)本科《國(guó)際經(jīng)濟(jì)法》歷年期末考試總題庫
- 2024年學(xué)前兒童科學(xué)教育知識(shí)題庫及答案(含各題型)
評(píng)論
0/150
提交評(píng)論