河南省唐河一中2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
河南省唐河一中2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
河南省唐河一中2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
河南省唐河一中2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
河南省唐河一中2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省唐河一中2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為定義在上的奇函數(shù),且滿足當(dāng)時(shí),,則()A. B. C. D.2.已知實(shí)數(shù)滿足約束條件,則的最小值是A. B. C.1 D.43.若集合,,則下列結(jié)論正確的是()A. B. C. D.4.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.5.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)6.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?7.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.128.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過(guò)點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個(gè)命題:①在拋物線上滿足條件的點(diǎn)僅有一個(gè);②若是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為;③無(wú)論過(guò)點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.49.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.10.將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,則所得函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B. C. D.11.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為()A. B.C. D.12.若集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護(hù)士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護(hù)士,其中甲乙兩名護(hù)士不到同一地,共有__________種選派方法.14.已知數(shù)列滿足,則________.15.已知雙曲線的一條漸近線方程為,則________.16.如圖,某市一學(xué)校位于該市火車站北偏東方向,且,已知是經(jīng)過(guò)火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點(diǎn).當(dāng)?shù)卣顿Y開(kāi)發(fā)區(qū)域發(fā)展經(jīng)濟(jì),其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時(shí),面積為最小,政府投資最低?三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長(zhǎng)度為,只要誤差的絕對(duì)值不超過(guò)就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測(cè)其長(zhǎng)度,繪制條形統(tǒng)計(jì)圖如圖:(1)估計(jì)該批次產(chǎn)品長(zhǎng)度誤差絕對(duì)值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值.18.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點(diǎn).(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.20.(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過(guò)千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))2345671011該產(chǎn)品的年利潤(rùn)(百萬(wàn)元)2.12.753.53.2534.966.5年返修臺(tái)數(shù)(臺(tái))2122286580658488部分計(jì)算結(jié)果:,,,,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(rùn)(百萬(wàn)元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))的線性回歸方程(精確到0.01).附:線性回歸方程中,,.21.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實(shí)數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.22.(10分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點(diǎn)與極值.(2)當(dāng),時(shí),證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當(dāng)時(shí),,所以,.故選:C.【點(diǎn)睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.2、B【解析】

作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),z取得最小值,由,解得,所以,所以,故選B.3、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點(diǎn)睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.5、D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫出運(yùn)算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點(diǎn)睛】該題考查的是有關(guān)集合的問(wèn)題,涉及到的知識(shí)點(diǎn)有函數(shù)的定義域,函數(shù)的值域,集合的運(yùn)算,屬于基礎(chǔ)題目.6、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.7、C【解析】

由開(kāi)始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻?,故選C.【點(diǎn)睛】框圖問(wèn)題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。8、C【解析】

①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,通過(guò)分析可知當(dāng)三點(diǎn)共線時(shí)取最小值,由兩點(diǎn)間的距離公式,可求此時(shí)最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計(jì)算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對(duì)于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個(gè),故①不正確;對(duì)于②,不妨設(shè),則關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,故②正確;對(duì)于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對(duì)于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.【點(diǎn)睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個(gè)命題,結(jié)合初中的“飲馬問(wèn)題”分析出何時(shí)取最小值.9、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.10、D【解析】

先化簡(jiǎn)函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對(duì)稱性得解.【詳解】,

將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,所得函數(shù)的解析式為,

再向右平移個(gè)單位長(zhǎng)度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個(gè)對(duì)稱中心為,故選D.【點(diǎn)睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)常考查定義域、值域、周期性、對(duì)稱性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問(wèn)題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.11、B【解析】

還原幾何體可知原幾何體為半個(gè)圓柱和一個(gè)四棱錐組成的組合體,分別求解兩個(gè)部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個(gè)圓柱,上半部分為一個(gè)四棱錐半個(gè)圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項(xiàng):【點(diǎn)睛】本題考查三視圖的還原、組合體體積的求解問(wèn)題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.12、A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】

先求出每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù),再減去甲乙兩名護(hù)士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù)有,若甲乙兩名護(hù)士到同一地的種數(shù)有,則甲乙兩名護(hù)士不到同一地的種數(shù)有.故答案為:.【點(diǎn)睛】本題考查利用間接法求排列組合問(wèn)題,正難則反,是基礎(chǔ)題.14、【解析】

項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當(dāng)時(shí),由已知,可得,∵,①故,②由①-②得,∴.顯然當(dāng)時(shí)不滿足上式,∴故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.15、【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.16、(1);(2).【解析】

(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進(jìn)而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡(jiǎn)整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進(jìn)而對(duì)原面積的函數(shù)用含t的表達(dá)式換元,再令進(jìn)行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因?yàn)橹本€與圓相切,所以.因?yàn)辄c(diǎn)在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時(shí),取得最大值,取最小值.答:當(dāng)時(shí),面積為最小,政府投資最低.【點(diǎn)睛】本題考查三角函數(shù)的實(shí)際應(yīng)用,應(yīng)優(yōu)先結(jié)合實(shí)際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)題意即可寫出該批次產(chǎn)品長(zhǎng)度誤差的絕對(duì)值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標(biāo)準(zhǔn)長(zhǎng)度的概率為0.4,即可求出隨機(jī)抽取2件產(chǎn)品,都不是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率,由對(duì)立事件的概率公式即可得到隨機(jī)抽取2件產(chǎn)品,至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時(shí),設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長(zhǎng)度誤差的絕對(duì)值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計(jì)為.(2)由(1)可知任取一件產(chǎn)品是標(biāo)準(zhǔn)長(zhǎng)度的概率為0.4,設(shè)至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率為,由題意,又,解得,所以符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值為.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的期望的求法,相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,對(duì)立事件的概率公式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.18、(1)或;(2)【解析】

(1)使用零點(diǎn)分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價(jià)轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時(shí),原不等式可化為.①當(dāng)時(shí),則,所以;②當(dāng)時(shí),則,所以;⑧當(dāng)時(shí),則,所以.綜上所述:當(dāng)時(shí),不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查零點(diǎn)分段求解含絕對(duì)值不等式,熟練使用分類討論的方法,以及知識(shí)的交叉應(yīng)用,同時(shí)掌握等價(jià)轉(zhuǎn)化的思想,屬中檔題.19、(1)證明見(jiàn)解析;(2)【解析】

(1)取的中點(diǎn),連接,易得,進(jìn)而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點(diǎn),中點(diǎn),連接,易證平面,平面,從而可知兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系,進(jìn)而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點(diǎn),連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點(diǎn),中點(diǎn),連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.由,可得,在等腰梯形中,,易知,.則,,設(shè)平面的法向量為,則,取,得.設(shè)平面的法向量為,則,取,得.因?yàn)?,,,所以,所以平面與平面所成的二面角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.20、(1)見(jiàn)解析;(2)【解析】

(1)先判斷得到隨機(jī)變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計(jì)算得到相應(yīng)的概率,進(jìn)而得到分布列和期望.(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程.【詳解】(1)由數(shù)據(jù)可知,,,,,五個(gè)年份考核

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論