版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10991
TheOnlyWayIsUp?
EconomicMobilityinMalaysiainthe21stCentury
GertonRongenPeterLanjouw
WORLDBANKGROUP
PovertyGlobalDepartmentDecember2024
PolicyResearchWorkingPaper10991
Abstract
Thisstudydocumentsshort-termeconomicmobilityinMalaysiaoverthefirsttwodecadesofthetwenty-firstcen-tury,atthepopulationlevelandforvarioussubgroups.Thefindingsshowbroadandsteadyimprovementsinwell-being,asevidencedbylargedecreasesinchronicpovertyandsig-nificantincreasesinpersistenteconomicsecurity.Thestudyemploysasyntheticpanelapproachbasedonnationallyrepresentativemicro-leveldatafor2004–22,witharefine-mentthatallowspresentingbootstrappointestimatesandstandarddeviations.Inaddition,thestudyinvestigatessev-eralpovertyandvulnerabilityscenarios,aswellasrelativemobility.First,theresultsindicatethatchronicpovertyhasdecreasedto2–3percentofthepopulation.Nevertheless,
progressisnotuniform:around15percentofthepopula-tioninruralEastMalaysialivesinchronicpoverty.Second,thestudyfindsconsiderableincreasesinsustainedeconomicsecurity—theextentofimprovement,however,dependsontheapproachandincomethresholdsthatareusedtodefinesecurity.Moreover,ethnicandregionaldifferencesinsecurestatusaresizableathigherincomeclassthresholds.The
largestdifferencesareofaregionaldimension:anindivid-ualinurbanPeninsularMalaysiaismorethanthreetimesmorelikelytoliveineconomicsecuritythansomeoneinruralEastMalaysia.Altogether,thestudyobservesupwardmovementacrosstheboardbutlittleevidenceofdramaticchangesintherelativepositionsofsocietalgroups.
ThispaperisaproductofthePovertyGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmaybecontactedata.g.m.j.rongen@vu.nl
.
ePolicyResearchWorkingPaperSeriesdisseminatesthendingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthendingsoutquickly,evenifthepresentationsarelessthanfullypolished.epaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.endings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.eydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
TheOnlyWayIsUp?EconomicMobilityinMalaysiainthe21stCentury
GertonRongen*aandPeterLanjouwa
JELcodes:C53,D31,D63,I32,O53
Keywords:Povertydynamics,incomemobility,ethnicinequality,regionalinequality,Malaysia,syntheticpanels
ThispaperwascommissionedbytheWorldBank’sPovertyandEquityGlobalPractice,EastAsiaandthePaci?cUnit(EEAPV)forthereportAFreshTakeonReducingInequalityandEnhancingMobilityinMalaysiaundertheprojectMalaysiaEquityandInclusion(FY23-25).ThereportwasledbyLauraRodriguez,RirinPurnamasariandMatthewWai-Poi.
Acknowledgments:theauthorswouldliketothankChrisElbersforhisinvaluablesuggestions,as
wellasLauraRodriguez,RirinPurnamasariandMatthewWai-Poifortheircommentsandre?ections.
*Correspondingauthor:a.g.m.j.rongen@vu.nl
aVrijeUniversiteitAmsterdam;AmsterdamInstituteforGlobalHealthandDevelopment
1.Introduction
ThisstudyanalyzespovertydynamicsandeconomicmobilityinMalaysiaovertheperiod2004-2022.Wemakeuseofasyntheticpanelbasedonnationallyrepresentativecross-sectionalmicrodatatoinvestigatethemovementsofMalaysianhouseholdsacrosstheincomedistribution.Wetakethreeperspectives:?rst,westudymobilityatthelowerendofthedistributionbyfocusingonpovertydynamics.Second,wetakeabroaderviewofeconomicmobilitybydividingthedistributionintothreegroupsandanalyzingupwardanddownwardmobilityalongthosedimensions.Finally,weassessrelativemobilitybyconsideringtransitionsacrossquintilesovertheentireincomespectrum.
Thisstudybuildsonthe?ndingsofRongenetal.(2024)infourways.First,itextendstheanalysisbyincludingsurveydataon2019and2022.Second,ittakesanexpandedviewbyexplicitlyanalyzingvariousscenariosforsettingthepovertylineandforincorporatingtheconceptsofvulnerabilityandeconomicsecurity.Third,itgivesthe?rstestimatesofrelativemobilitybasedonthesemicrodata.Lastly,weintroduceamethodologicalre?nementsuchthatweareabletopresentbootstrappointestimatesforalltransitions,whereasthepreviousstudyestimatedupperandlowerboundsonmobilityonly.
WeconcludethatthepictureofeconomicmobilityinMalaysiaovertheperiod2004-2022isgenerallypositive,withlargereductionsinchronicpovertyandagrowinggroupthatweclassifyaseconomicallysecure.However,thesegainsarenotuniformanddependonhowwede?neincomegroups,andonwhichpopulationsubgroupweconsider.ChancesofremainingpoorandoffallingintopovertyarehighestinruralEastMalaysia.Moreover,attainingeconomicsecuritythroughsustainedupwardmobilityisparticularlydi?cultinruralEastMalaysiaandforEastMalaysiaBumiputeras,twogroupsthatoverlaptoanimportantextent.Downwardmobilityseemstohaveincreasedforthesegroups.Lastly,relativemobilityresultsshowconsiderablepersistenceinthepositionofsizeablegroupsateitherthebottomorthetopofthedistribution.Overourstudyperiod,wedonotobserveepisodesofgreaterrelativemobility–theorderingofMalaysiansocietyasexpressedthroughitsincomedistributiondidnotexhibitmajorchanges.
Thepaperproceedsbydiscussingmethodologyanddatainthenextsection.Thereafter,weprovideresultsin
section3,
whichconsistsofthreesubsections.Wedrawsomeconclusionsinthe?nalsection.
1
2.Methodologyanddata
1
2.1.Boundestimatesforpovertydynamics
ThissectionsummarizestheapproachpresentedinDangetal.(2014).Ouraimistoestimatejointandconditionalprobabilitiesofpovertydynamics.Forexample,wewishtoknowthelikelihoodthatanindividualispoorinsurveyround1andnon-poorinround2,ajointprobabilitywhichwecanwriteasfollows,denotingpercapitaincomebyyiandthepovertylinebyz:
P(yi1≤z1andyi2>z2).
Alongsideevidenceonjointprobabilities,wearealsointerestedinconditionalprobabilities.Forinstance,wemightwishtoestimatethelikelihoodofmovingoutofpoverty,conditionalonbeingpoorinitially.Suchaconditionalprobabilitycanbewrittenas
andcanbecomputedstraightforwardlyfromthejointprobabilities,astheright-handsideoftheequationshows.PaneldataarenotavailableinMalaysia.Intheabsenceofsuchdata,wedonotobserveincomesinround1andround2forthesameunitiandwouldnormallynotbeabletoestimatetheseprobabilities.However,themethodwedescribebelowdrawsoncross-sectionaldataandyieldsbothupperandlowerboundsforeachofthefourpossibleoutcomesofthedynamicprocess,inbothconditionalandunconditionalterms.
Wemodelthelogarithmofpercapitaincomeineachroundasalinearfunctionoftime-invarianthouseholdcharacteristicsandanindividualerrorterm.Schematically:
yi1=βxi1+εi1
and
yi2=βxi2+εi2.
Thebasicideaofthemethodistousetime-invarianthouseholdcharacteristicsxitopredicthouseholdpercapitaincomefortheyearinwhichtheactualobservationislacking.Suchcharacteristicswillbe
1ThissectionislargelybasedonthedescriptionofmethodologyinRongenetal.(2022).
2
unchangedacrossthetworounds.Mostly,theywillbecharacteristicsofthehouseholdhead,suchastheyearofbirth,educationalattainment,ethnicityorreligionandbirthdistrict.Inaddition,ifthesurveyincludesretrospectivequestions,thesecouldalsobeincluded,e.g.,ifthehouseholdownedacarortelevisionatthetimeoftheprevioussurvey.Aswehavedataforeachsurveyround,weestimatethecoe?cientvectorβonthesetime-invariantexplanatoryvariables.
Inpracticalterms,wepredicttheround1incomeforhouseholdsintheround2surveybymultiplyingthecoe?cientvectorresultingfromtheround1regression(β1)withthecharacteristicsofhouseholdsinround2(xi2).Thispredictionlooksasfollowsfortheobservationsiofround2,withtheadditionofanerrortermestimate:
一
i1=βxi2+i1.
Weturn?rsttotheassumptionsunderlyingthisapproachandwillthendiscusshowestimatesfortheerrortermareobtained.
Themethodforestimatingboundsonpovertytransitionquantitiesispredicatedontwoimportantassumptions.First,weneedtoassumethattheunderlyingpopulationfromwhichthedataaresampledisthesameinbothsurveyrounds.Thisimpliesthatthemethodcannotbeappliedincaseswheretherearelargeshockstothepopulation,forexample,ifthereweremassivemigrationintooroutofthecountry.Moreprecisely,wewanttoensurethattheincomemodelcoe?cientsthatweestimateinround1aregoodpredictorsforwhattheround1incomeofthehouseholdssurveyedinround2wouldhavebeen.Hence,toensurestabilityofthereferencepopulation,weonlyincludehouseholdswhoseheadsarebetween25and60yearsinsurveyround1.
2
Second,weneedtomakeassumptionsabouttherelationshipbetweentheerrortermsεi1andεi2.Speci?cally,weassumethattheseare,onaverage,positivelycorrelatedovertime.Inthepresenceofhousehold-speci?ce?ectsandpersistenceofshocks,thisdoesnotseemtobeanunreasonableassumption.Insettingswherepaneldataareavailable,thecorrelationcoe?cientoflogincomePcanbeestimateddirectly,andindeedstudiesreportvaluesbetween0.53and0.89acrossavarietyofcountries(Dangetal.(2014);Colgan(2023,2024).Wedonotmakefurtherassumptionsabouttheshapeofthedistributionoftheerrortermsfortheseboundestimates;inthatsense,theresultingboundsonpovertytransitionsarenon-parametric.
Theupper-andlower-boundestimatesformobilityderivefromtwoextremecasesoftheassumedrelationshipbetweentheerrorterms.Itisimportanttonotethatupperboundsofmobility
2Thisagerangeischosensothatformationofnewhouseholdsanddissolutionofexistinghouseholdsshouldbeataminimum.Moreover,itensuresthatinround1headswillgenerallyhaveobtainedtheirmaximumlevelofeducation.
3
correspondtothelowerboundofimmobility,i.e.,remainingpoororremainingnon-poor,andviceversa.Throughoutthepaper,upper-boundestimateandlower-boundestimaterefertoupperandlowerboundsofmobility.
Atoneextreme,weconsiderthecaseofP=0,whichcorrespondstotheupper-boundmobilityestimate.Inthisscenario,theerrorsareuncorrelatedandmobility,givenhouseholdcharacteristics,willbeatamaximum,bothoutofpovertyandintoit.Becauseweassumethaterrorsinfactarepositivelycorrelated,onaveragetheupperboundwillbestrictlylargerthanactualmobility.Predictedupper-boundround1incomeforhouseholdisurveyedinround2willbe:
u=′xi2l1,
~
wherel1isaresidualrandomlydrawnfromtheactualdistributionofresidualsresultingfromestimatingtheincomemodelontheround1data.
3
Basedonthepredictionsthusobtained,wecanestimatetheprobabilityofeachpovertytransitionforeachobservation.Aggregatingthesequantitiesatthepopulationlevel,weobtainthecountry-levelpovertydynamics.
4
Duetotherandomnatureofthisprocess,thesestepsarerepeatedRtimes,withR=100inthisapplication,andaveragedtoobtainarobustestimateoftheupperboundofmobility.
Attheotherextreme,ourlower-boundestimatesassumeaperfectpositivecorrelation
betweentheerrors:P=1.Inthiscase,averagemobilitywillbeatitsminimum.Fortheestimation,thismeanswesimplytaketheestimatedround2residual,scaleitbyY,andaddittothe?ttedround1income:
5
L=′xi2+Yi2.
Analogoustotheupper-boundscenario,butwithouttherepetition,weobtainthelower-boundpopulation-levelpovertydynamicsestimates.Conditionalprobabilitiesaresubsequentlycomputedfromthepopulation-orsubgroup-leveljointprobabilityestimates.
3IncontrasttoRongenetal.(2024),wedoapplypopulationweightsindrawingthisrandomsampleofresiduals,inresponsetoadiscrepancywefoundbetweenthepreviouslyestimatedboundsandproposedbootstrappointestimatesthatwediscussfurtherdown.Theresultingchangestoboundestimatesareminor,andmobilitytrendsremainuna?ected.
4Inouranalysistheregressionsareatthehouseholdleveltakinglogpercapitahouseholdincomeasthedependentvariable.Transitionprobabilitiesforeachhouseholdarepopulation-weightedwhenweaggregate,sothatthecountry-level?guresrepresentpopulationproportions.
5WeuseascalingfactorY=ε1?ε2toadjustforthedi?erenceinerrorvariancebetweenthetworounds(εisthestandarderroroftheresiduals).
4
2.2.Bootstrappointestimates
WeproposeaBayesian-inspiredinnovationtothesyntheticpanelmethodthatallowsustopresentpointestimatesoftransitionquantities.
6
Ourpointofdepartureisasfollows:wedonotknowtheactualdegreeofhouseholdincomecorrelationinMalaysia,butseveralpanelstudieshavedocumentedsuchcorrelationsovertimeforarangeofcountries.WeassumethatthetruevaluesforMalaysiawillbesomewhereinthisrangeofempiricalcorrelations.Ourproposition,then,isthatabootstrapsampleoftheseempiricalincomecorrelations,coupledwiththeassumptionthatresidualsfollowabivariatenormaldistribution,yieldsameaningfulpointestimatefortransitionquantities,andplausiblestandarddeviations.Obviously,wedonotknowwhattheactualMalaysiancorrelationsareineachinterval,sothatwewillfocusonthebandwidtharoundthepointestimate,ratherthantheactualestimateitself.
OurpointestimatesarebasedonthemethodputforwardbyDangetal.(2014),thesamepaperthatintroducedboundestimates.Precisioncomesatthecostofintroducingadditionalassumptions,however.Notably,weassumethattheerrorsofourincomemodel,εi1andεi2,followabivariatenormaldistributioncharacterizedbythecorrelationcoe?cientp.Wederivehypothesizedvaluesforthecorrelationoftheerrorterms(p)bydrawingonincomecorrelationcoe?cients(py1y2)fromactualpaneldatainothercountries.DangandLanjouw(2023)providethefollowingpropositionfordoingso:
Theequationcombinesmeasuresofthevariationinourdatawithahypotheticalincomecorrelationtoarriveatanestimateofp.OursampleoftheincomecorrelationshasbeenobtainedfromColgan(2023,2024)andDangandLanjouw(2023),whoprovideactualpanelcorrelationsforfourteencountriesintheEU-SILCdatabaseandtheUnitedStates.
Westandardizetheseempiricalcorrelationstoatwo-yearreferenceinterval,sincethecorrelationsreportedcoveredintervalsofdi?erentduration.Subsequently,wedrawabootstrap
6Dang&Lanjouw(2023)alsopresentamethodtoobtainpointestimates,whichdependsoncohort-levelincomecorrelationstoinferhousehold-levelcorrelation.However,therobustnessofthismethodisnotgenerallyaccepted.Instead,wemakeuseofdocumentedempiricalmeasurementsofhousehold-levelcorrelationinothercountries.
5
sampleofsize100fromthesestandardizedcorrelations.
7
Foreachdraw,weestimatetransitionprobabilitiesforallintervalsofadjacentsurveyroundsinourdata.Byinterval,we?rstcomputetheresultingerrorcorrelation,andthenemploythebivariatestandardnormalcumulativedistributionfunctionΦ2(.)toobtainestimatesforallpovertytransitionprobabilities,e.g.asfollowsforthepoortopoortransition
8
:
Foreachdraw,householdlevelresultsareaggregateduptopopulationandsubgrouplevel.Then,averagingoverall100drawsyieldsthebootstrapmeanprobabilities,ourpointestimates,andallowsustocomputestandarddeviationsoverthe100draws.
2.3.Vulnerability
Weanalyzevulnerabilityandtheachievementofeconomicsecurityintwoseparateways.Oneapproachisbasedonthede?nitionofavulnerabilitylineasintroducedbyDangandLanjouw(2017).Below,wesummarizethisapproachandexplainhowittiesinwiththesyntheticpanelmethod.Ourgoalistoestimate3x3transitionmatricesfortheincomecategoriespoor,vulnerableandeconomicallysecure.
9
Thisapproachfocusesonthelowerpartoftheincomedistribution,whichisre?ectedinourchoiceofincomecategories.Wenotethatonceanindividualreachesthesecurecategory,thereisnofurtherscopeformobilityinthisset-up.Furtherdown,weoutlinetwootherscenariosthatareabletoshedlightonmobilityhigheruptheincomedistribution.
Westartbyde?ningthecategory‘vulnerable’asthosenon-poorinperiod1whofaceacertain
probabilityPvorhigheroffallingintopovertyinperiod2.Thisconditionalprobabilitycanbedenotedas:
7Wealsousedmaximumlikelihoodestimationto?tbetaandnormaldistributionstotheempiricaldata,fromwhichwethenwouldhavebeenabletodrawasampleofcoe?cients.However,the?tofthesetheoreticaldistributionswasnotcompletelysatisfactory,suchthatwepreferredtostickwiththeempiricaldistribution.
8WerefertoEquations20-23inDangetal.(2014)foralltransitionformulae.
9Therearenogenerallyagreeduponnamesforthesecategories.Insomeapplications,thenon-poorwhoarenotconsideredvulnerablehavebeenlabelled‘middleclass’.Weoptforthemoreneutral‘economicallysecure’.Onereasonisthatsomeofthesehouseholdswillbequiterich,sothatmiddleclasswouldbeamisnomerforthem.
6
wherev1standsforthevulnerabilityline.ThelatterisderivedempiricallyatpopulationlevelaftersettingthevulnerabilityindexPv,thehighestprobabilityoffallingintopovertythatwearewillingtoacceptbeforewenolongerconsiderahouseholdtobeeconomicallysecure.Forexample,wemightsettheindexPvatavalueof20percent.Ifahouseholdfacedaprobabilityoffallingintopovertygreaterthan20percent,wewouldconsiderthishouseholdtobevulnerable.Formally,thevulnerabilitylineisthenderivedfromthisindexasfollows
10
:
max{v1|P(y2≤z2|z1<y1≤v1)≥Pv}
Thisapproachcontrastswithotherapproachesinthesensethatthevulnerabilitylineisnotsetarbitrarily,forexampleat1.5timesthepovertyline,butderivedempiricallyfromthevulnerabilityindex.Inpractice,thisrequiresarecursivealgorithmthatgoesoverthesyntheticpaneldatatoarriveatthevulnerabilitylinethatyieldsthedesiredvulnerabilityindex.Weacknowledgethatsettingthevulnerabilityindexisstillanarbitrarydecision,butitisbasedonatransparentweighingofrisksthatevokestheinsecuritythatisinherenttovulnerability.
Wemostlypresentresultsforpovertyandvulnerabilitydynamicsin?guresthatdonotindicatethelevelofprecisionoftheestimates.Themainreasonforthisisthattheresultsalreadyconsistofboundsthatincorporateuncertaintyabouttheerrorsinourincomemodel.Theboundsarehighlylikelytocontainthetruevalueoftheprobabilityestimates,aswascon?rmedinothersettingsbyDangetal.(2014)andHéraultandJenkins(2019).Inaddition,samplesizesforeachroundarelarge,sothatthestandarderrorsofourestimatorsaregenerallysmall.
ThesecondapproachisbasedonamethodforanalyzingvulnerabilityintroducedbyChaudhuri(Chaudhurietal.(2002);Chaudhuri(2003)).
11
Here,weagainconceiveofvulnerabilityasacertainprobabilityoffuturepoverty,withtheimportantfeaturethatahouseholdthatiscurrentlypoormaynotnecessarilybevulnerable:itscharacteristicscouldmakethelikelihoodofpovertyinthenextperiodlow,butitcouldhaveanincomebelowthepovertylinethisperiodduetosomeshock.Ahousehold’sprobabilityoffuturepoverty,i.e.itsChaudhurivulnerability,isestimatedasfollows:
whereitisassumedthattheerrortermoftheregressionfollowsanormaldistribution.Theprobabilitythathouseholdincomey?willbebelowthepovertylinez,givenhouseholdcharacteristicsX?,isthen
10Recallthatweareassumingapositivecorrelationbetweentheerrorsinourincomemodel,whichensuresthatP(y2≤z2|z1<y1≤v1)isdecreasinginv1.
11OnereasonforincludingthisapproachisthattheWorldBankusesitacrosstheEastAsiaPaci?cregiontode?nevulnerabilitylinesbasedonaconsistentmethodology,seeKrahetal.(forthcoming).
7
derivedfromthestandardnormalcumulativedensityfunctionΦ(.),withestimatedexpectationand
^^
varianceofxhβandxhθrespectively.
Weapplythismethodprimarilytoderiveaggregateincomethresholdsthatseparatethefollowingthreegroups:thepoorandvulnerable,theaspiringmiddleclass,andthemiddleandupperclass.
12
Notethatthegroupinginthisscenariodi?ersconsiderablyfromtheclassi?cationinthepreviousscenario.Letuscallthethresholdbetweenthe?rsttwogroupsinthisscenariotheChaudhurivulnerabilityline,andthelinedividingthelasttwogroupsthemiddleclassline.TheChaudhurivulnerabilitylineistheaveragepredictedpercapitaincomeofthegroupofhouseholdsthathaveacertainprobabilityofbeingpoorinthefuture,10percentinourapplication.Buildingonthis,themiddleclasslineistheaveragepredictedincomeofhouseholdswithacertainprobabilityofbeingvulnerable,again10percentinourapplication.Householdsarethenclassi?edintothethreegroupsaccordingtothesetwolines.
2.4.Relativemobility
Sofarwehavedetailedhowweanalyzemovementspastcertain?xedmonetarygoalposts.Alimitationofsuchabsolutemobilityanalysisisthatwhathappensoncehouseholdsmovecomfortablybeyondsuchthresholdsisoutofouranalyticalscope.Analyzingrelativemobilityacrossthe?vequintilesoftheincomedistributionenablesustotakeabroaderviewandtoconsidermovementsalongtheentireincomespectrum.Quintilethresholdsaredeterminedbasedonthecross-sectionalincomedistributioninagivenyear,sotheydi?erfromyeartoyear.Thesyntheticpanelisthenemployedtoestimatetheprobabilitythatahouseholdhasmadeaparticulartransitionfromonequintiletoanotheroveradjacentsurveyrounds.Weobtaina5x5transitionmatrixonceestimatesareaggregated.
Forthepointestimatesofrelativemobility,weapplythemethodasdescribedabove,substitutingthequintilethresholdsforthepovertylinesinthebivariatestandardnormalcumulativedistributionfunctionabove.Forthebounds,wetakeadi?erentapproachfromtheonedescribedinsection2.1.Becausewewanttoestimatetheprobabilitiesoftwenty-?vetransitionsweneedhigherprecision:thestandardboundsapproachwouldlikelyresultinuninformativeestimates.Hence,wetakethesmallestandlargestcorrelationvaluesinoursampleofincomecorrelationstoestimateourrelativemobilitybounds.
12WeusethisterminologyinlinewiththeumbrellastudyoninequalityinMalaysiatowhichthispapercontributed.
8
Thelowestcorrelationcoe?cientinoursampleis0.53forGreece,whilethehighestis0.89forCzechia.
13
Theserepresentrespectivelythehighandlowmobilityscenario,asthecloserthecoe?cientistoone,thestickierincomesare.Afurtherassumptionthenisthattheseimportedcoe?cientsaresu?cientlyextremetoformupperandlowerboundsinthecaseofMalaysia.Giventhevarietyofcountriesincluded,atvariouslevelsofeconomicdevelopment,wesuggestthatthisassumptionisnotunreasonable.
TherelevanttransitionprobabilitiescanthenbeestimatedbydrawingonthebivariatestandardnormalcumulativedistributionfunctionΦ2(.),asbefore.Forexample,theprobabilityofbeinginthebottomquintiletwosurveysinarowisestimatedasfollows:
whereprepresentsthe20thpercentileofthedistributioninyearjandtheothersymbolsareas
de?nedinsection
2.1.
2.5.Data
Thisstudyanalyzeseightroundsofcross-sectionaldatafromtheHouseholdIncomeSurvey(HIS)collectedbytheDepartmentofStatisticsMalaysia.Thedataarefortheyears2004,2007,2009,2012,2014,2016,2019and2022;weconsiderallpairsofadjacentsurveyrounds.
14
Onerequirementforanalyzingwelfarechangesovertimeisthatthemeasureofwelfare,incomeinourcase,ismeasuredinaconsistentandcomparablemanner.TheMalaysiandataareofhighqualityandsatisfythisrequirement.Inaddition,thesamplesizesofthesurveysarelarge,rangingfrom36,000toover80,000household-levelobservationspersurveyyear.
Thedependentvariableinouranalysisisthenaturallogarithmofmonthlyhouseholdpre-taxincomepercapita,whichisevaluatedagainstourpovertylinetodeterminethepovertystatusofahousehold.Wedidnotusepost-taxincomebecausefewMalaysiansaresubjecttopersonalincometax;itisthusunlikelytoa?ectpovertyorvulnerabilitystatus.Householdsreportincomeoverthetwelvemonthsprecedingtheinterview.Notably,thismeansthathouseholdsinterviewedin2022alsoreportoverpartof2021.
13InthecaseofGreece,thisisthecorrelationofdisposablehouseholdincomebetween2001-2004;forCzechia,itisthe2014-2015correlationofdisposableincomes.
14Surveysmayextendintothesubsequentyear.Whenwe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水泥回轉(zhuǎn)窯課程設(shè)計(jì)
- 收購(gòu)廢鐵合同范例
- 行政兼職合同范例
- 介紹合同正式合同范例
- 傳媒公司解約合同范例
- 武漢音樂(lè)學(xué)院《光電技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 冷鮮食材購(gòu)買協(xié)議3篇
- 吉林省生物科技研發(fā)員勞動(dòng)合同2篇
- 合作開店的合同范本3篇
- 合同補(bǔ)充協(xié)議3篇
- 必刷題2024六年級(jí)英語(yǔ)上冊(cè)語(yǔ)法規(guī)則專項(xiàng)專題訓(xùn)練(含答案)
- 2024新教科版四年級(jí)上冊(cè)科學(xué)知識(shí)點(diǎn)總結(jié)精簡(jiǎn)版
- 人工智能在礦產(chǎn)勘探中的應(yīng)用分析篇
- 中西文化鑒賞智慧樹知到答案2024年鄭州大學(xué)
- 2024國(guó)開大學(xué)《經(jīng)濟(jì)學(xué)基礎(chǔ)》形考任務(wù)2答案
- 2024山東省招聘社區(qū)工作者試題及答案
- 14《答謝中書書》對(duì)比閱讀-2024-2025中考語(yǔ)文文言文閱讀專項(xiàng)訓(xùn)練(含答案)
- DL∕T 5494-2014 電力工程場(chǎng)地地震安全性評(píng)價(jià)規(guī)程
- 顱腦外傷病人的急救和護(hù)理
- 大型儲(chǔ)罐制作安裝施工方案
- 2024版《供電營(yíng)業(yè)規(guī)則》學(xué)習(xí)考試題庫(kù)500題(含答案)
評(píng)論
0/150
提交評(píng)論