上??茖W技術(shù)職業(yè)學院《機器學習基礎(chǔ)實踐》2023-2024學年第一學期期末試卷_第1頁
上??茖W技術(shù)職業(yè)學院《機器學習基礎(chǔ)實踐》2023-2024學年第一學期期末試卷_第2頁
上??茖W技術(shù)職業(yè)學院《機器學習基礎(chǔ)實踐》2023-2024學年第一學期期末試卷_第3頁
上??茖W技術(shù)職業(yè)學院《機器學習基礎(chǔ)實踐》2023-2024學年第一學期期末試卷_第4頁
上??茖W技術(shù)職業(yè)學院《機器學習基礎(chǔ)實踐》2023-2024學年第一學期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁上??茖W技術(shù)職業(yè)學院《機器學習基礎(chǔ)實踐》

2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個利用人工智能進行能源管理的系統(tǒng)中,例如優(yōu)化建筑物的能源消耗或電網(wǎng)的調(diào)度,以下哪個方面的考慮可能是至關(guān)重要的?()A.實時數(shù)據(jù)采集和處理B.精準的預(yù)測模型C.多目標優(yōu)化策略D.以上都是2、在人工智能的藝術(shù)創(chuàng)作評價中,例如評價一幅由人工智能生成的繪畫作品,以下哪種標準和方法可能是具有挑戰(zhàn)性的?()A.創(chuàng)新性和獨特性B.技術(shù)技巧和表現(xiàn)力C.情感傳達和審美價值D.以上都是3、在人工智能的應(yīng)用中,智能推薦系統(tǒng)越來越普及。假設(shè)一個電商平臺要為用戶提供個性化的商品推薦,需要綜合考慮用戶的歷史購買行為、瀏覽記錄和商品的屬性等多方面信息。以下哪種算法或模型在處理這種多源異構(gòu)數(shù)據(jù)的推薦任務(wù)上表現(xiàn)更為出色?()A.協(xié)同過濾算法B.基于內(nèi)容的推薦算法C.混合推薦算法D.關(guān)聯(lián)規(guī)則挖掘4、在人工智能的文本摘要生成中,假設(shè)需要從長篇文章中提取關(guān)鍵信息并生成簡潔準確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點?()A.基于注意力機制的模型,關(guān)注重要的文本部分B.按照文章的開頭和結(jié)尾提取關(guān)鍵語句C.隨機選擇文章中的段落作為摘要D.不進行任何分析,直接輸出原文的前幾段5、在人工智能的對話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對話信息生成連貫且有針對性的回復。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長短時記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當前輸入的文本,不考慮歷史信息C.對上下文信息進行簡單的統(tǒng)計分析D.隨機生成回復,不依賴上下文6、在人工智能的語音識別任務(wù)中,環(huán)境噪聲和口音的多樣性會影響識別效果。假設(shè)要開發(fā)一個能夠在嘈雜環(huán)境和多種口音下準確識別語音的系統(tǒng),以下哪種技術(shù)或方法在提高系統(tǒng)的適應(yīng)性方面最為關(guān)鍵?()A.聲學模型的優(yōu)化B.語言模型的融合C.多模態(tài)信息的利用D.以上方法結(jié)合使用7、在人工智能的倫理和社會影響方面,存在許多需要思考的問題。假設(shè)一個基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡歷和面試表現(xiàn)進行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項是最值得關(guān)注的?()A.系統(tǒng)可能會因為數(shù)據(jù)偏差而對某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導致企業(yè)招聘策略被競爭對手輕易了解C.系統(tǒng)可能會過于依賴簡歷信息,而忽略了候選人的實際能力和潛力D.系統(tǒng)的運行成本過高,對企業(yè)造成經(jīng)濟負擔8、在人工智能的機器翻譯任務(wù)中,需要將一種語言翻譯成另一種語言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語和特定的文化背景知識。以下哪種方法能夠提高翻譯的準確性和專業(yè)性?()A.使用通用的機器翻譯模型,不進行任何定制B.結(jié)合領(lǐng)域詞典和知識圖譜進行翻譯C.依靠人工翻譯,不使用機器翻譯D.隨機選擇翻譯結(jié)果,不考慮準確性9、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實體之間的關(guān)系。假設(shè)要構(gòu)建一個關(guān)于歷史人物和事件的知識圖譜,以下哪種數(shù)據(jù)源對于豐富和準確的圖譜構(gòu)建是最有價值的?()A.百科全書和歷史書籍B.社交媒體上的相關(guān)討論C.個人博客和論壇帖子D.未經(jīng)證實的網(wǎng)絡(luò)傳聞10、在人工智能的圖像語義分割任務(wù)中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進行訓練B.采用簡單的分割算法,降低計算復雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進行任何預(yù)處理,直接對原始圖像進行分割11、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.考慮交通狀況、貨物重量和配送時間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會受到任何突發(fā)情況的影響D.實時更新路況信息,動態(tài)調(diào)整配送路徑,提高配送效率12、強化學習是人工智能中的一種學習方法,常用于訓練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個機器人需要通過強化學習來學習如何在復雜的環(huán)境中行走而不摔倒。以下關(guān)于強化學習的描述,哪一項是不正確的?()A.智能體通過與環(huán)境進行交互,根據(jù)獲得的獎勵來調(diào)整自己的行為策略B.強化學習需要大量的試驗和錯誤來找到最優(yōu)策略,計算成本較高C.可以用于解決連續(xù)動作空間和高維度狀態(tài)空間的問題D.強化學習不需要對環(huán)境有任何先驗知識,完全依靠隨機探索來學習13、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計算量。以下關(guān)于模型壓縮和量化的敘述,不準確的是()A.可以通過剪枝、量化和低秩分解等方法實現(xiàn)模型壓縮B.模型壓縮和量化會導致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對于大型復雜模型效果不佳D.這些技術(shù)對于在資源受限的設(shè)備上部署人工智能模型具有重要意義14、在人工智能的圖像識別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計一個用于識別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個因素對于提高識別準確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量15、在人工智能的研究中,模型的可解釋性是一個重要的問題。假設(shè)開發(fā)了一個用于預(yù)測股票價格的人工智能模型,但用戶對模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測的?()A.繪制復雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能在公共服務(wù)創(chuàng)新和社會治理中的應(yīng)用。2、(本題5分)簡述人工智能在社會信任和合作機制建設(shè)中的貢獻。3、(本題5分)簡述監(jiān)督學習、無監(jiān)督學習和強化學習的區(qū)別。三、操作題(本大題共5個小題,共25分)1、(本題5分)在Python中,運用猴群算法解決一個組合優(yōu)化問題。模擬猴子的跳躍和搜索行為,展示算法的性能。2、(本題5分)基于Python的OpenCV庫和深度學習框架,實現(xiàn)一個實時的車牌號碼識別系統(tǒng)。能夠在不同天氣和光照條件下準確識別出車牌號碼,并進行實時的數(shù)據(jù)庫更新和查詢。3、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個基于Transformer架構(gòu)的情感分析模型,對大量文本進行情感極性判斷。4、(本題5分)借助遺傳算法優(yōu)化一個函數(shù)的參數(shù),使其達到最優(yōu)值,觀察進化過程中函數(shù)值的變化。5、(本題5分)運用自然語言處理技術(shù),對大量的新聞文本進行主題分類。使用詞向量模型(如Word2Vec或GloVe)將文本轉(zhuǎn)換為向量,然后使用分類算法進行分類,計算分類的準確率和召

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論