版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省淮北地區(qū)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)在時(shí)取得最小值,則()A. B. C. D.2.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.3.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.4.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.5.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.6.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.7.給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種8.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個(gè)整數(shù)為素?cái)?shù)),在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.9.函數(shù)f(x)=lnA. B. C. D.10.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.611.年某省將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.12.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,若,則__________.14.已知向量滿足,且,則_________.15.如圖,在梯形中,∥,分別是的中點(diǎn),若,則的值為___________.16.在平面直角坐標(biāo)系中,若函數(shù)在處的切線與圓存在公共點(diǎn),則實(shí)數(shù)的取值范圍為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長.18.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.19.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個(gè)數(shù).20.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).21.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.22.(10分)2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識.有關(guān)部門為宣傳垃圾分類知識,面向該市市民進(jìn)行了一次“垃圾分類知識"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:(i)得分不低于可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次:(ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對應(yīng)概率如下:贈(zèng)送話費(fèi)(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.附:,若,則,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時(shí)的值.【詳解】解:,其中,,,故當(dāng),即時(shí),函數(shù)取最小值,所以,故選:D【點(diǎn)睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】
圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)椋魂P(guān)于原點(diǎn)對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對稱.3、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.4、A【解析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.5、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.6、A【解析】
利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7、C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時(shí)有種情況,則有種不同的安排方法;故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】
先列舉出不超過的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素?cái)?shù)有:、、、、、,在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】因?yàn)閒x=lnx2-4x+4x-23=10、D【解析】
作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識,屬于中檔題.11、B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.12、B【解析】
根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項(xiàng).【詳解】.設(shè)直線與相切于點(diǎn),斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點(diǎn)睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計(jì)算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿足互異性.14、【解析】
由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.15、【解析】
建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算即可得到答案.【詳解】以A為坐標(biāo)原點(diǎn),AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點(diǎn)睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.16、【解析】
利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點(diǎn),利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時(shí)也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運(yùn)用.18、(1);(2).【解析】
(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)椋?,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.19、(1)見解析(2)見解析【解析】
(1)求導(dǎo)后分析導(dǎo)函數(shù)的正負(fù)再判斷單調(diào)性即可.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,再換元將原方程轉(zhuǎn)化為,再求導(dǎo)分析的圖像數(shù)形結(jié)合求解即可.【詳解】(1)的定義域?yàn)?,當(dāng)時(shí),,所以在單調(diào)遞減;當(dāng)時(shí),,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,令則原方程轉(zhuǎn)化為,令,.令,,∴,,,,,當(dāng)時(shí),,當(dāng)時(shí),.如圖可知①當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);②當(dāng)時(shí),有兩個(gè)零點(diǎn),即有兩個(gè)零點(diǎn);③當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);④時(shí),此時(shí)無零點(diǎn),即此時(shí)無零點(diǎn).【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性的方法,同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)零點(diǎn)的問題,屬于中檔題.20、(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共事業(yè)銷售人員工作總結(jié)
- 陜西省渭南市富平縣2023-2024學(xué)年九年級上期末化學(xué)模擬試卷
- 禮品行業(yè)前臺(tái)工作總結(jié)
- 煙酒店居民樓小區(qū)保安工作要點(diǎn)
- IT行業(yè)程序員工作總結(jié)
- 科技研發(fā)合同三篇
- 2022年河南省鶴壁市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年江西省贛州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年浙江省衢州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2021年浙江省金華市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 小學(xué)英語語法復(fù)習(xí)課件1
- (高清版)TDT 1037-2013 土地整治重大項(xiàng)目可行性研究報(bào)告編制規(guī)程
- 中國旅游集團(tuán)2024年校園招聘筆試參考題庫附帶答案詳解
- 導(dǎo)管室進(jìn)修匯報(bào)課件
- T-CEPPC 13-2023 電網(wǎng)區(qū)域電碳因子和電力碳排放量核算規(guī)范
- 《萬以內(nèi)數(shù)的認(rèn)識》大單元整體設(shè)計(jì)
- 監(jiān)控系統(tǒng)調(diào)試檢驗(yàn)批質(zhì)量驗(yàn)收記錄(新表)
- 24.教育規(guī)劃綱要(2024-2024)
- 山東省棗莊市滕州市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 我的家鄉(xiāng)隴南
- 2023-2024學(xué)年蘇州市八年級語文上學(xué)期期末考試卷附答案解析
評論
0/150
提交評論