![2025屆江西省新余市高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view14/M03/23/34/wKhkGWdq4taATqe-AAJVO_ppmag003.jpg)
![2025屆江西省新余市高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view14/M03/23/34/wKhkGWdq4taATqe-AAJVO_ppmag0032.jpg)
![2025屆江西省新余市高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view14/M03/23/34/wKhkGWdq4taATqe-AAJVO_ppmag0033.jpg)
![2025屆江西省新余市高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view14/M03/23/34/wKhkGWdq4taATqe-AAJVO_ppmag0034.jpg)
![2025屆江西省新余市高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view14/M03/23/34/wKhkGWdq4taATqe-AAJVO_ppmag0035.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆江西省新余市高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中,,為的中點(diǎn),,,則()A. B. C. D.22.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.3.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-24.已知橢圓的中心為原點(diǎn),為的左焦點(diǎn),為上一點(diǎn),滿足且,則橢圓的方程為()A. B. C. D.5.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.6.一個(gè)幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個(gè)邊長為的正方形及正方形內(nèi)一段圓弧組成,則這個(gè)幾何體的表面積是()A. B. C. D.7.設(shè)過點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,為坐標(biāo)原點(diǎn),若,且,則點(diǎn)的軌跡方程是()A. B.C. D.8.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.49.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個(gè)單位長度 B.向右平移個(gè)單位長度C.向左平移個(gè)單位長度 D.向右平移個(gè)單位長度10.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件11.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.12.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項(xiàng)的系數(shù)和為______,常數(shù)項(xiàng)為______.14.在的展開式中,的系數(shù)為________.15.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為______.16.如圖所示,點(diǎn),B均在拋物線上,等腰直角的斜邊為BC,點(diǎn)C在x軸的正半軸上,則點(diǎn)B的坐標(biāo)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,分別是的中點(diǎn),.(1)證明:平面;(2)求二面角的余弦值.18.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.19.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.21.(12分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.22.(10分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.2、C【解析】
將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,因?yàn)楹瘮?shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.3、B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.4、B【解析】由題意可得c=,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點(diǎn)睛:橢圓的定義:到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡,當(dāng)和大于兩定點(diǎn)間的距離時(shí),軌跡是橢圓,當(dāng)和等于兩定點(diǎn)間的距離時(shí),軌跡是線段(兩定點(diǎn)間的連線段),當(dāng)和小于兩定點(diǎn)間的距離時(shí),軌跡不存在.5、B【解析】
由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.6、C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個(gè)幾何體的直觀圖如圖所示,它是由一個(gè)正方體中挖掉個(gè)球而形成的,所以它的表面積為.故選:C【點(diǎn)睛】本題考查三視圖以及幾何體的表面積的計(jì)算,考查空間想象能力和運(yùn)算求解能力.7、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算表示出,從而可利用表示出;由坐標(biāo)運(yùn)算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【點(diǎn)睛】本題考查動(dòng)點(diǎn)軌跡方程的求解,涉及到平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算;關(guān)鍵是利用動(dòng)點(diǎn)坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算可整理得軌跡方程.8、B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請?jiān)诖溯斎朐斀猓?、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個(gè)單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:10、D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.11、B【解析】
根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)?,所以函?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.12、C【解析】
設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學(xué)史了解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解析】
(1)令求得所有項(xiàng)的系數(shù)和;(2)先求出展開式中的常數(shù)項(xiàng)與含的系數(shù),再求展開式中的常數(shù)項(xiàng).【詳解】將代入,得所有項(xiàng)的系數(shù)和為3.因?yàn)榈恼归_式中含的項(xiàng)為,的展開式中含常數(shù)項(xiàng),所以的展開式中的常數(shù)項(xiàng)為.故答案為:3;-260【點(diǎn)睛】本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特殊項(xiàng)問題,屬于基礎(chǔ)題.14、【解析】
根據(jù)二項(xiàng)展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項(xiàng)為:,的系數(shù)為.
故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式定理的應(yīng)用,屬于基礎(chǔ)題.15、1【解析】
由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.16、【解析】
設(shè)出兩點(diǎn)的坐標(biāo),結(jié)合拋物線方程、兩條直線垂直的條件以及兩點(diǎn)間的距離公式列方程,解方程求得的坐標(biāo).【詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點(diǎn)睛】本題考查拋物線的方程和運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)連接交于點(diǎn),由三角形中位線定理得,由此能證明平面.(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【詳解】證明:證明:連接交于點(diǎn),則為的中點(diǎn).又是的中點(diǎn),連接,則.因?yàn)槠矫?,平面,所以平面.?)由,可得:,即所以又因?yàn)橹崩庵?,所以以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則且,可解得,令,得平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,則所以二面角的余弦值為.【點(diǎn)睛】本題主要考查直線與平面平行、二面角的概念、求法等知識,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2)【解析】
(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點(diǎn)睛】本題考查運(yùn)用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運(yùn)用其公式,合理地選擇進(jìn)行邊角互化,屬于基礎(chǔ)題.19、(1)見解析;(2).【解析】
(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)?,所?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)?,所以,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點(diǎn)即為球心,記的中點(diǎn)為點(diǎn),則.由與相似可得,所以.所以三棱錐外接球的體積為.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了三棱錐外接球體積的計(jì)算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.20、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.21、(1);(2)【解析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)?,所以由三角形面積公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)?,所以由正弦定理代入化簡可得,由?),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因?yàn)椋?,所?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 時(shí)尚買手店翻新居間合同
- 圖書館基礎(chǔ)裝修合同
- 橡膠制品采購居間合同范本
- 樂器維修店簡易裝修合同
- 教育機(jī)構(gòu)廠房裝修合同
- 保健用品居間合同
- 面包磚重新鋪施工方案
- 門店招牌工程施工方案
- 溧水區(qū)單位保潔方案
- 在村里承包魚塘合同范本
- 智能RPA財(cái)務(wù)機(jī)器人開發(fā)教程-基于來也UiBot 課件 第1章-機(jī)器人流程自動(dòng)化概述
- 2024-2025學(xué)年河南省鄭州市高二上期期末考試數(shù)學(xué)試卷(含答案)
- 2024-2025學(xué)年天津市河?xùn)|區(qū)高一上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(含答案)
- 信永中和筆試題庫及答案
- 甲流乙流培訓(xùn)課件
- 兒科學(xué)川崎病說課
- 2025《省建設(shè)工程檔案移交合同書(責(zé)任書)》
- 2025年云南農(nóng)墾集團(tuán)總部春季社會(huì)招聘(9人)管理單位筆試遴選500模擬題附帶答案詳解
- 《石油鉆井基本知識》課件
- 2024新滬教版英語(五四學(xué)制)七年級上單詞默寫單
- 電力兩票培訓(xùn)
評論
0/150
提交評論