河北省涿鹿縣北晨學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
河北省涿鹿縣北晨學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
河北省涿鹿縣北晨學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
河北省涿鹿縣北晨學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
河北省涿鹿縣北晨學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省涿鹿縣北晨學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),其中a,b是實(shí)數(shù),則()A.1 B.2 C. D.2.已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.3.已知平面平面,且是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長度為()A. B.16 C. D.4.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,5.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.7.已知向量,且,則m=()A.?8 B.?6C.6 D.88.若函數(shù)()的圖象過點(diǎn),則()A.函數(shù)的值域是 B.點(diǎn)是的一個(gè)對(duì)稱中心C.函數(shù)的最小正周期是 D.直線是的一條對(duì)稱軸9.過拋物線的焦點(diǎn)的直線與拋物線交于、兩點(diǎn),且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.11.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④12.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)長、寬、高分別為1、2、2的長方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_________.14.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎(jiǎng).在比賽結(jié)果揭曉之前,四人的猜測(cè)如下表,其中“√”表示猜測(cè)某人獲獎(jiǎng),“×”表示猜測(cè)某人未獲獎(jiǎng),而“○”則表示對(duì)某人是否獲獎(jiǎng)未發(fā)表意見.已知四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的,那么兩名獲獎(jiǎng)?wù)呤莀______.甲獲獎(jiǎng)乙獲獎(jiǎng)丙獲獎(jiǎng)丁獲獎(jiǎng)甲的猜測(cè)√××√乙的猜測(cè)×○○√丙的猜測(cè)×√×√丁的猜測(cè)○○√×15.在中,已知,則的最小值是________.16.已知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)的范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的右焦點(diǎn),過點(diǎn)且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點(diǎn)且斜率不為0的直線與橢圓交于,兩點(diǎn).為坐標(biāo)原點(diǎn),為橢圓的右頂點(diǎn),求四邊形面積的最大值.18.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.19.(12分)某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1和l2所在直線的距離為0.5(百米),對(duì)岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對(duì)稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對(duì)岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測(cè)EF的視角(∠EPF)最大?請(qǐng)?jiān)冢?)的坐標(biāo)系中,寫出觀測(cè)點(diǎn)P的坐標(biāo).20.(12分)如圖,已知橢圓經(jīng)過點(diǎn),且離心率,過右焦點(diǎn)且不與坐標(biāo)軸垂直的直線與橢圓相交于兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右頂點(diǎn)為,線段的中點(diǎn)為,記直線的斜率分別為,求證:為定值.21.(12分)如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動(dòng)點(diǎn),且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.22.(10分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計(jì)算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.2、A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.3、C【解析】

根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,由此求得點(diǎn)的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點(diǎn)建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點(diǎn)在第一象限內(nèi)),由得,即,化簡得,由于點(diǎn)在第一象限內(nèi),所以點(diǎn)的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點(diǎn)的軌跡長度為.故選:C【點(diǎn)睛】本小題主要考查線面角的概念和運(yùn)用,考查動(dòng)點(diǎn)軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.4、A【解析】

依題意問題是,然后按直到型驗(yàn)證即可.【詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.5、A【解析】

利用復(fù)數(shù)的除法運(yùn)算化簡,求得對(duì)應(yīng)的坐標(biāo),由此判斷對(duì)應(yīng)點(diǎn)所在象限.【詳解】,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限,屬于基礎(chǔ)題.6、C【解析】

根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿足輸出的值為8.故選:C【點(diǎn)睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.7、D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.8、A【解析】

根據(jù)函數(shù)的圖像過點(diǎn),求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點(diǎn),可得,即,,,故,對(duì)于A,由,則,故A正確;對(duì)于B,當(dāng)時(shí),,故B錯(cuò)誤;對(duì)于C,,故C錯(cuò)誤;對(duì)于D,當(dāng)時(shí),,故D錯(cuò)誤;故選:A【點(diǎn)睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.9、B【解析】

設(shè)點(diǎn)、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點(diǎn)弦長公式可求得.【詳解】設(shè)點(diǎn)、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點(diǎn)睛】本題考查拋物線焦點(diǎn)弦長的計(jì)算,計(jì)算出拋物線的方程是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.10、A【解析】

觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c(diǎn)睛】本題通過三視圖考察空間識(shí)圖的能力,屬于基礎(chǔ)題。11、D【解析】

求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.12、A【解析】

計(jì)算的中點(diǎn)坐標(biāo)為,圓半徑為,得到圓方程.【詳解】的中點(diǎn)坐標(biāo)為:,圓半徑為,圓方程為.故選:.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

一個(gè)長、寬、高分別為1、2、2的長方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長方體的體對(duì)角線的長,長方體的體對(duì)角線的長為,所以容器體積的最小值為.14、乙、丁【解析】

本題首先可根據(jù)題意中的“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目分為四種情況,然后對(duì)四種情況依次進(jìn)行分析,觀察四人所猜測(cè)的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測(cè)正確,則乙,丙,丁猜測(cè)錯(cuò)誤,與題意不符,故甲猜測(cè)錯(cuò)誤;若乙猜測(cè)正確,則依題意丙猜測(cè)無法確定正誤,丁猜測(cè)錯(cuò)誤;若丙猜測(cè)正確,則丁猜測(cè)錯(cuò)誤;綜上只有乙,丙猜測(cè)不矛盾,依題意乙,丙猜測(cè)是正確的,從而得出乙,丁獲獎(jiǎng).所以本題答案為乙、丁.【點(diǎn)睛】本題是一個(gè)簡單的合情推理題,能否根據(jù)“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.15、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時(shí)取到等號(hào),故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.16、【解析】

由復(fù)數(shù)對(duì)應(yīng)的點(diǎn),在第二象限,得,且,從而求出實(shí)數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,∴,且,∴,故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值.【解析】

(1)根據(jù)通徑和即可求(2)設(shè)直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設(shè)直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當(dāng)且僅當(dāng),即時(shí)取得等號(hào),即四邊形面積的最大值.【點(diǎn)睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.18、(1)(2)【解析】

(1)零點(diǎn)分段去絕對(duì)值解不等式即可(2)由題在上有解,去絕對(duì)值分離變量a即可.【詳解】(1)不等式,即等價(jià)于或或解得,所以原不等式的解集為;(2)當(dāng)時(shí),不等式,即,所以在上有解即在上有解,所以,.【點(diǎn)睛】本題考查絕對(duì)值不等式解法,不等式有解求參數(shù),熟記零點(diǎn)分段,熟練處理不等式有解問題是關(guān)鍵,是中檔題.19、(1)見解析,,x[0,1];(2)P(,)時(shí),視角∠EPF最大.【解析】

(1)以A為原點(diǎn),l1為x軸,拋物線的對(duì)稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測(cè)點(diǎn)P的坐標(biāo).【詳解】(1)以A為原點(diǎn),l1為x軸,拋物線的對(duì)稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點(diǎn)B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當(dāng)且僅當(dāng)即,即,即時(shí)取等號(hào);故P(,)時(shí)視角∠EPF最大,答:P(,)時(shí),視角∠EPF最大.【點(diǎn)睛】本題主要考查圓錐曲線的實(shí)際應(yīng)用,理解題意,構(gòu)建合適的模型是求解的關(guān)鍵,涉及最值問題一般利用基本不等式或者導(dǎo)數(shù)來進(jìn)行求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1);(2)詳見解析.【解析】

(1)由橢圓離心率、系數(shù)關(guān)系和已知點(diǎn)坐標(biāo)構(gòu)建方程組,求得,代入標(biāo)準(zhǔn)方程中即可;(2)依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),,通過聯(lián)立直線方程與橢圓方程化簡整理和中點(diǎn)的坐標(biāo)表示用含k的表達(dá)式表示,,進(jìn)而表示;由韋達(dá)定理表示根與系數(shù)的關(guān)系進(jìn)而表示用含k的表達(dá)式表示,最后做比即得證.【詳解】(1)設(shè)橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點(diǎn)睛】本題考查由離心率求橢圓的標(biāo)準(zhǔn)方程,還考查了橢圓中的定值問題,屬于較難題.21、(1)見解析;(II).【解析】

試題分析:(1)取中點(diǎn),連結(jié),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點(diǎn),連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論