版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省東??h2025屆高考仿真模擬數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,則等于()A. B. C. D.2.已知當(dāng),,時(shí),,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定3.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.空間點(diǎn)到平面的距離定義如下:過(guò)空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動(dòng)點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.5.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.6.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.8.德國(guó)數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開式,該公式于明朝初年傳入我國(guó).在我國(guó)科技水平業(yè)已落后的情況下,我國(guó)數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國(guó)的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書,為我國(guó)用級(jí)數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.9.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q10.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.1411.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)12.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長(zhǎng)為2的正方體中,點(diǎn)、分別是棱,的中點(diǎn),是側(cè)面正方形內(nèi)一點(diǎn)(含邊界),若平面,則線段長(zhǎng)度的取值范圍是______.14.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.15.?dāng)?shù)據(jù)的標(biāo)準(zhǔn)差為_____.16.已知數(shù)列遞增的等比數(shù)列,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點(diǎn)B落在矩形的邊上,記該點(diǎn)為E,且折痕的兩端點(diǎn)M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時(shí)的值;(3)問(wèn)當(dāng)θ為何值時(shí),的面積S取得最小值?并求出這個(gè)最小值.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程;(2)在曲線上取一點(diǎn),直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線于點(diǎn),求的最大值.19.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.20.(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國(guó)”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)不喜歡閱讀中國(guó)古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國(guó)古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國(guó)古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.21.(12分)已知函數(shù)(1)解不等式;(2)若均為正實(shí)數(shù),且滿足,為的最小值,求證:.22.(10分)在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線和直線的極坐標(biāo)方程;(2)已知直線與曲線、相交于異于極點(diǎn)的點(diǎn),若的極徑分別為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先通過(guò)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.2、C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時(shí),根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點(diǎn)睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.3、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.4、D【解析】
建立平面直角坐標(biāo)系,將問(wèn)題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動(dòng)點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡(jiǎn)得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【點(diǎn)睛】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動(dòng)點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.5、C【解析】
根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)椋谶f增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.6、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).7、D【解析】
先判斷函數(shù)在時(shí)的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個(gè)數(shù)的大小,然后根據(jù)函數(shù)在時(shí)的單調(diào)性,比較出三個(gè)數(shù)的大小.【詳解】當(dāng)時(shí),,函數(shù)在時(shí),是增函數(shù).因?yàn)?,所以函?shù)是奇函數(shù),所以有,因?yàn)?,函?shù)在時(shí),是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問(wèn)題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.8、B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.9、C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C10、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.11、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.12、C【解析】
恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過(guò)導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
取中點(diǎn),連結(jié),,推導(dǎo)出平面平面,從而點(diǎn)在線段上運(yùn)動(dòng),作于,由,能求出線段長(zhǎng)度的取值范圍.【詳解】取中點(diǎn),連結(jié),,在棱長(zhǎng)為2的正方體中,點(diǎn)、分別是棱、的中點(diǎn),,,,,平面平面,是側(cè)面正方形內(nèi)一點(diǎn)(含邊界),平面,點(diǎn)在線段上運(yùn)動(dòng),在等腰△中,,,作于,由等面積法解得:,,線段長(zhǎng)度的取值范圍是,.故答案為:,.【點(diǎn)睛】本題考查線段長(zhǎng)的取值范圍的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.14、【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
先計(jì)算平均數(shù)再求解方差與標(biāo)準(zhǔn)差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標(biāo)準(zhǔn)差,故答案為:【點(diǎn)睛】本題主要考查了標(biāo)準(zhǔn)差的計(jì)算,屬于基礎(chǔ)題.16、【解析】
,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)、通項(xiàng)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2),的最小值為.(3)時(shí),面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設(shè)為,令,則,即可設(shè),利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進(jìn)而求解;(3)由題,,則,設(shè),,利用導(dǎo)函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因?yàn)?所以,,所以,又,,則,所以,所以(2)記,則,設(shè),,則,記,則,令,則,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng)時(shí)取最小值,此時(shí),的最小值為.(3)的面積,所以,設(shè),則,設(shè),則,令,,所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng),即時(shí),面積取最小值為【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用,考查利用導(dǎo)函數(shù)求最值,考查運(yùn)算能力.18、(1)(2)最大值為【解析】
(1)利用消去參數(shù),求得曲線的普通方程,再轉(zhuǎn)化為極坐標(biāo)方程.(2)設(shè)出兩點(diǎn)的坐標(biāo),求得的表達(dá)式,并利用三角恒等變換進(jìn)行化簡(jiǎn),再結(jié)合三角函數(shù)最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標(biāo)方程為,即.(2)不妨設(shè),,,,,則當(dāng)時(shí),取得最大值,最大值為.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,考查極坐標(biāo)系下線段長(zhǎng)度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.19、(1);(2)【解析】試題分析:(1)將絕對(duì)值不等式兩邊平方,化為二次不等式求解.(2)將問(wèn)題化為分段函數(shù)問(wèn)題,通過(guò)分類討論并根據(jù)恒成立問(wèn)題的解法求解即可.試題解析:整理得解得①②解得③,且無(wú)限趨近于4,綜上的取值范圍是20、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版影視作品轉(zhuǎn)包合同3篇
- 2024版?zhèn)€人房地產(chǎn)租賃貸款合同規(guī)范3篇
- 2024版挖掘機(jī)施工項(xiàng)目管理合同6篇
- 2024年房屋買賣合同英文翻譯及海外市場(chǎng)適應(yīng)性評(píng)估協(xié)議3篇
- 2024年E管材國(guó)際市場(chǎng)風(fēng)險(xiǎn)評(píng)估合同2篇
- 2024版商業(yè)地產(chǎn)項(xiàng)目整體收購(gòu)與轉(zhuǎn)讓合同范本3篇
- 2024版文化藝術(shù)單位藝術(shù)工作者聘用合同3篇
- 2024年度不銹鋼宣傳欄安裝工程合同解除條件合同3篇
- 2024版?zhèn)€人貸款擔(dān)保解除條件合同范本3篇
- 2024版?zhèn)€人養(yǎng)老保險(xiǎn)合同爭(zhēng)議答辯狀3篇
- 人教版(2024新版)七年級(jí)上冊(cè)生物期末復(fù)習(xí)課件
- 2021年四川省眉山市公開招聘警務(wù)輔助人員(輔警)筆試專項(xiàng)訓(xùn)練題試卷(2)含答案
- 《主題班會(huì):自信》課件
- 浙江大學(xué)醫(yī)學(xué)院附屬兒童醫(yī)院招聘人員筆試真題2023
- 學(xué)生乘公交車安全
- 護(hù)理不良事件的原因分析
- 2024年貴州省中考數(shù)學(xué)真題含解析
- 《藥物過(guò)敏反應(yīng)》課件
- 2024年輔警招錄考試模擬200題及答案
- UI設(shè)計(jì)(赤峰應(yīng)用技術(shù)職業(yè)學(xué)院)知到智慧樹答案
- 二零二四年度工業(yè)自動(dòng)化技術(shù)研發(fā)與轉(zhuǎn)讓合同3篇
評(píng)論
0/150
提交評(píng)論