版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省蘇州園區(qū)2025屆高考數(shù)學(xué)二模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.2.近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.3.已知集合A={x|x<1},B={x|},則A. B.C. D.4.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是()A. B. C. D.5.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.6.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達(dá),則甲第一個到、丙第三個到的概率是()A. B. C. D.8.已知復(fù)數(shù),滿足,則()A.1 B. C. D.59.若復(fù)數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.10.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.11.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.12.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.14.已知全集為R,集合,則___________.15.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.16.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點,求的值.18.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:19.(12分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當(dāng)時,.20.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當(dāng)時,不等式恒成立,求證:.21.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.2、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、A【解析】∵集合∴∵集合∴,故選A4、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.6、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.7、D【解析】
先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.8、A【解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.9、C【解析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.10、A【解析】
根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.11、D【解析】
根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.12、D【解析】
根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計算是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時,取得最大值,此時,解得.14、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運(yùn)算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.15、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎(chǔ)題.16、3【解析】
雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線的直角坐標(biāo)方程為;直線的直角坐標(biāo)方程為(2)【解析】
(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標(biāo),從而得兩點間距離.【詳解】解:(1)曲線的直角坐標(biāo)方程為直線的直角坐標(biāo)方程為(2)據(jù)解,得或【點睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查參數(shù)方程與普通方程的互化,屬于基礎(chǔ)題.18、(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時等號成立,∴.令,.則在上單調(diào)遞減.∴.∴當(dāng)時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據(jù)絕對值的定義,合理去掉絕對值號,及合理轉(zhuǎn)化恒成立問題是解答本題的關(guān)鍵,著重考查分析問題和解答問題的能力,以及轉(zhuǎn)化思想的應(yīng)用.19、(1)見解析(2)見解析【解析】
(1)求出,分別以當(dāng),,時,結(jié)合函數(shù)的單調(diào)性和最值判斷零點的個數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時,,單調(diào)遞減,,,此時有1個零點;當(dāng)時,無零點;當(dāng)時,由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導(dǎo)易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當(dāng)時,;當(dāng)時,,∴.令,則,當(dāng)時,,當(dāng)時,,∴,∴,,∴,即.【點睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點問題,考查了運(yùn)用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點在于第二問不等式的證明中,合理設(shè)出函數(shù),通過比較最值證明.20、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當(dāng)時,不等式恒成立,分離參數(shù)只需時,恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當(dāng)時,;當(dāng)時,恒成立,設(shè)(),所以.由(1)可知,,使,所以,當(dāng)時,,當(dāng)時,,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點、極值最值、不等式的證明,分離參數(shù)是解題的關(guān)鍵,意在考查邏輯推理、數(shù)學(xué)計算能力,屬于較難題.21、(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進(jìn)行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時時有極小值.(2)可知,進(jìn)而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當(dāng)時,;當(dāng)時,,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時,,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版電子商務(wù)產(chǎn)業(yè)園企業(yè)租賃合同
- 林州建筑職業(yè)技術(shù)學(xué)院《環(huán)境遙感與信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼源職業(yè)技術(shù)學(xué)院《輕化工程專業(yè)發(fā)展概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024中鐵十三局集團(tuán)有限公司鐵路工程監(jiān)理合同3篇
- 2024版25MW柴油發(fā)電機(jī)電站設(shè)備保險及理賠服務(wù)合同3篇
- 2024年度多媒體智能硬件產(chǎn)品研發(fā)與銷售合同
- 2024年度新型城鎮(zhèn)化建設(shè)項目房地產(chǎn)測繪業(yè)務(wù)全權(quán)委托合同2篇
- 2024年度文化產(chǎn)業(yè)品牌管理人才聘用合同樣本3篇
- 2024年標(biāo)準(zhǔn)版技術(shù)保密合作合同書版
- 2024版建筑工程質(zhì)量檢測承包合同3篇
- 江蘇南京鼓樓區(qū)2023-2024九年級上學(xué)期期末語文試卷及答案
- 河南汽車工廠48萬臺乘用車發(fā)動機(jī)建設(shè)項目竣工環(huán)境保護(hù)驗收監(jiān)測報告
- 2023-2024學(xué)年四川省成都市金牛區(qū)八年級(上)期末數(shù)學(xué)試卷
- 德邦物流-第三方物流服務(wù)
- 混凝土冬季施工保溫保濕措施
- 心電監(jiān)護(hù)技術(shù)
- 2024年華潤電力投資有限公司招聘筆試參考題庫含答案解析
- 壟斷行為的定義與判斷準(zhǔn)則
- 模具開發(fā)FMEA失效模式分析
- 聶榮臻將軍:中國人民解放軍的奠基人之一
- 材料化學(xué)專業(yè)大學(xué)生職業(yè)生涯規(guī)劃書
評論
0/150
提交評論