![上海市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view9/M01/1B/16/wKhkGWdnAPKABJ70AAHBFIh-5V4680.jpg)
![上海市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view9/M01/1B/16/wKhkGWdnAPKABJ70AAHBFIh-5V46802.jpg)
![上海市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view9/M01/1B/16/wKhkGWdnAPKABJ70AAHBFIh-5V46803.jpg)
![上海市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view9/M01/1B/16/wKhkGWdnAPKABJ70AAHBFIh-5V46804.jpg)
![上海市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view9/M01/1B/16/wKhkGWdnAPKABJ70AAHBFIh-5V46805.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.42.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.已知,,,則,,的大小關(guān)系為()A. B. C. D.4.運(yùn)行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.5.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.6.已知點(diǎn)、.若點(diǎn)在函數(shù)的圖象上,則使得的面積為的點(diǎn)的個(gè)數(shù)為()A. B. C. D.7.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或8.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.9.已知,則()A. B. C. D.10.已知函數(shù),則()A.2 B.3 C.4 D.511.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.12.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)為_________.14.設(shè),則_____,(的值為______.15.函數(shù)的單調(diào)增區(qū)間為__________.16.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(diǎn)(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.18.(12分)某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過(guò)度的部分按元/度收費(fèi),超過(guò)度但不超過(guò)度的部分按元/度收費(fèi),超過(guò)度的部分按元/度收費(fèi).(I)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過(guò)抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費(fèi)用不超過(guò)元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.19.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長(zhǎng).(2)若為線段上一點(diǎn),且,求二面角的余弦值.20.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.21.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.22.(10分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.2、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.3、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對(duì)數(shù)式比較大小,屬于中檔題.4、B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應(yīng)填?故選:.【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是基礎(chǔ)題.5、B【解析】
根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.6、C【解析】
設(shè)出點(diǎn)的坐標(biāo),以為底結(jié)合的面積計(jì)算出點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,即,設(shè)點(diǎn)到直線的距離為,則,解得,另一方面,由點(diǎn)到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點(diǎn)共有三個(gè).故選:C.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及點(diǎn)到直線的距離公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.7、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.8、A【解析】
根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.9、B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.10、A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.11、C【解析】
求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.12、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒(méi)有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒(méi)有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【詳解】的展開式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.14、7201【解析】
利用二項(xiàng)展開式的通式可求出;令中的,得兩個(gè)式子,代入可得結(jié)果.【詳解】利用二項(xiàng)式系數(shù)公式,,故,,故(=,故答案為:720;1.【點(diǎn)睛】本題考查二項(xiàng)展開式的通項(xiàng)公式的應(yīng)用,考查賦值法,是基礎(chǔ)題.15、【解析】
先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號(hào)為正時(shí)對(duì)應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號(hào),本題屬于基礎(chǔ)題.16、1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點(diǎn)斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因?yàn)?,所?令,,則在單調(diào)遞減,因?yàn)?,所以在上增,在單調(diào)遞增.,,因?yàn)?,所以在區(qū)間上的值域?yàn)?點(diǎn)睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,曲線在某個(gè)點(diǎn)處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過(guò)程中,需要對(duì)公式的正確使用.18、(1);(2),;(3)見(jiàn)解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關(guān)于的方程,即可得;(3)取每段中點(diǎn)值作為代表的用電量,分別算出對(duì)應(yīng)的費(fèi)用值,對(duì)應(yīng)得出每組電費(fèi)的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),,所以與之間的函數(shù)解析式為.(2)由(1)可知,當(dāng)時(shí),,則,結(jié)合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機(jī)變量的數(shù)學(xué)期望19、(1)的長(zhǎng)為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)?,所以,即,解得,所以的長(zhǎng)為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線段長(zhǎng)度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.20、(1)見(jiàn)解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)在點(diǎn)建立空間直角坐標(biāo)系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因?yàn)?所以,所以,所以,又,所以平面.因?yàn)槠矫?,所以平面平面.(Ⅱ)如圖,以點(diǎn)為原點(diǎn),分別為軸、軸、軸正方向,建立空間直角坐標(biāo)系,則.設(shè),則取,則為面法向量.設(shè)為面的法向量,則,即,取,則依題意,則.于是.設(shè)直線與平面所成角為,則即直線與平面所成角的正弦值為.21、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 投資合同協(xié)議書范本
- 草坪施工合同范本
- 預(yù)付款購(gòu)銷合同范本
- 水資源保護(hù)與治理合作項(xiàng)目協(xié)議
- 金融服務(wù)居間協(xié)議范本
- 煤矸石合同范本
- 2025年度電網(wǎng)轉(zhuǎn)供電業(yè)務(wù)代理合同范本
- 2025年度高端裝備制造銷售合同履行與監(jiān)督
- 2025年度汽車保險(xiǎn)代理轉(zhuǎn)讓協(xié)議書匯編
- 二零二五年度深圳經(jīng)濟(jì)特區(qū)勞動(dòng)合同法企業(yè)員工勞動(dòng)保障法律援助服務(wù)合同
- 碳纖維加固定額B013
- 脊柱外科進(jìn)修匯報(bào)
- 測(cè)繪工程產(chǎn)品價(jià)格表匯編
- 拘留所教育課件02
- 語(yǔ)言和語(yǔ)言學(xué)課件
- 《工作場(chǎng)所安全使用化學(xué)品規(guī)定》
- 裝飾圖案設(shè)計(jì)-裝飾圖案的形式課件
- 2022年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)考試筆試試題及答案解析
- 護(hù)理學(xué)基礎(chǔ)教案導(dǎo)尿術(shù)catheterization
- ICU護(hù)理工作流程
- 廣東版高中信息技術(shù)教案(全套)
評(píng)論
0/150
提交評(píng)論