版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省葫蘆島協(xié)作體2025屆高三(最后沖刺)數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或2.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.3.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.4.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.5.已知,是橢圓的左、右焦點(diǎn),過的直線交橢圓于兩點(diǎn).若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.6.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.7.設(shè),滿足約束條件,若的最大值為,則的展開式中項(xiàng)的系數(shù)為()A.60 B.80 C.90 D.1208.設(shè)集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.11.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大12.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為________.14.已知不等式的解集不是空集,則實(shí)數(shù)的取值范圍是;若不等式對任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是___15.函數(shù)的定義域是___________.16.設(shè)集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.18.(12分)已知函數(shù),.(1)若時(shí),解不等式;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓的焦距是,點(diǎn)是橢圓上一動點(diǎn),點(diǎn)是橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn)(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)是拋物線上兩點(diǎn),且處的切線相互垂直,直線與橢圓相交于兩點(diǎn),求的面積的最大值.20.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實(shí)數(shù)的取值范圍.22.(10分)為貫徹十九大報(bào)告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗(yàn)田中各隨機(jī)抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨(dú)立.從、、三組各隨機(jī)選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗(yàn)田中分別再隨機(jī)抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.2、D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.3、D【解析】
根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點(diǎn),通過數(shù)形結(jié)合的方式可確定;利用過某一點(diǎn)曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價(jià)于與有且僅有四個不同的交點(diǎn)由可知,直線恒過點(diǎn)當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點(diǎn)的曲線的兩條切線,切點(diǎn)分別為由圖象可知,當(dāng)時(shí),與有且僅有四個不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)直線與曲線交點(diǎn)個數(shù)確定參數(shù)范圍的問題;涉及到過某一點(diǎn)的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點(diǎn)個數(shù)的問題,通過確定直線恒過的定點(diǎn),采用數(shù)形結(jié)合的方式來進(jìn)行求解.4、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.5、D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.6、D【解析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.7、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項(xiàng)式定理計(jì)算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時(shí),的最大值為,故.展開式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)為:.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃求最值,二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.8、C【解析】
作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時(shí).故選:C.【點(diǎn)睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.9、A【解析】
根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)椋室玫?,只需將向左平移個單位長度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.10、A【解析】
根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個零點(diǎn),則等價(jià)為有且僅有3個根,即與有三個不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無數(shù)多個交點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),即,時(shí),與有兩個交點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),即時(shí),與有三個交點(diǎn),要使與有三個不同的交點(diǎn),則直線處在過和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.11、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.12、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計(jì)算整理能力,難度較易.14、【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當(dāng)時(shí)滿足題意,解得或所以答案為【點(diǎn)睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時(shí)的分類討論化簡15、【解析】
由于偶次根式中被開方數(shù)非負(fù),對數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點(diǎn)睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.16、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因?yàn)?解得,即,則,故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查解一元二次不等式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點(diǎn)睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、(1)(2)【解析】
(1)零點(diǎn)分段法,分,,討論即可;(2)當(dāng)時(shí),原問題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時(shí),,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當(dāng)時(shí),由得,即,故得,又由題意知:,即,故的范圍為.【點(diǎn)睛】本題考查解絕對值不等式以及不等式能成立求參數(shù),考查學(xué)生的運(yùn)算能力,是一道容易題.19、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn)的坐標(biāo),表達(dá)出直線的斜率之積,再根據(jù)三點(diǎn)均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達(dá)式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達(dá)出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因?yàn)樘幍那芯€相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達(dá)定理有設(shè),則.當(dāng)且僅當(dāng)時(shí)取等號.故的面積的最大值為.【點(diǎn)睛】本題主要考查了根據(jù)橢圓上的點(diǎn)坐標(biāo)滿足的關(guān)系式求解橢圓基本量求方程的方法,同時(shí)也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.20、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點(diǎn)睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國女身模特行業(yè)市場運(yùn)營模式及未來發(fā)展動向預(yù)測報(bào)告
- 2024-2030年中國地芬諾酯資金申請報(bào)告
- 2024年標(biāo)準(zhǔn)入職合同模板專業(yè)版版
- 2024年新建住宅購買意向協(xié)議
- 2024年城市綜合體精裝修商鋪合同2篇
- 眉山藥科職業(yè)學(xué)院《插畫設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年特許加盟合同:知名服裝品牌加盟經(jīng)營詳細(xì)條款
- 珠海城市職業(yè)技術(shù)學(xué)院實(shí)訓(xùn)室管理員工作職責(zé)
- 2024年版權(quán)許可使用合同(含作品名稱、許可范圍、使用期限等)
- 2024年汽車噴漆行業(yè)人才培養(yǎng)與輸送合同3篇
- 英語:初升高八種時(shí)態(tài)復(fù)習(xí)全解課件
- 糧油廠安全現(xiàn)狀評價(jià)報(bào)告
- 有機(jī)肥供貨及售后服務(wù)方案(投標(biāo)專用)
- 走近湖湘紅色人物知到章節(jié)答案智慧樹2023年湖南工商大學(xué)
- 普通化學(xué)習(xí)題庫
- 穿孔機(jī)操作規(guī)程
- 危機(jī)公關(guān)處理技巧
- 10、特種作業(yè)人員管理臺賬
- 機(jī)械基礎(chǔ)考試題庫及參考答案
- GB/T 70.1-2008內(nèi)六角圓柱頭螺釘
- 第一章數(shù)學(xué)的萌芽
評論
0/150
提交評論