昆明幼兒師范高等專(zhuān)科學(xué)?!稊?shù)據(jù)挖掘理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
昆明幼兒師范高等專(zhuān)科學(xué)?!稊?shù)據(jù)挖掘理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
昆明幼兒師范高等專(zhuān)科學(xué)校《數(shù)據(jù)挖掘理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
昆明幼兒師范高等專(zhuān)科學(xué)?!稊?shù)據(jù)挖掘理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
昆明幼兒師范高等專(zhuān)科學(xué)校《數(shù)據(jù)挖掘理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)昆明幼兒師范高等專(zhuān)科學(xué)?!稊?shù)據(jù)挖掘理論與技術(shù)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集。以下關(guān)于主成分分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.主成分是原始變量的線(xiàn)性組合,能夠保留數(shù)據(jù)的主要信息B.通過(guò)計(jì)算協(xié)方差矩陣的特征值和特征向量來(lái)確定主成分C.主成分分析可以消除變量之間的相關(guān)性,使數(shù)據(jù)更易于分析D.主成分分析后的維度數(shù)量是固定的,不能根據(jù)需要進(jìn)行調(diào)整2、對(duì)于一個(gè)具有多個(gè)分類(lèi)變量的數(shù)據(jù)集,若要分析不同類(lèi)別之間的差異,應(yīng)選擇哪種統(tǒng)計(jì)分析方法?()A.方差分析B.獨(dú)立性檢驗(yàn)C.相關(guān)分析D.描述性統(tǒng)計(jì)3、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達(dá)數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀(guān)地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢(shì)C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準(zhǔn)確性和可靠性D.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力4、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會(huì)得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)5、假設(shè)我們正在分析一家公司的銷(xiāo)售數(shù)據(jù),發(fā)現(xiàn)某個(gè)月的銷(xiāo)售額異常高。在進(jìn)一步分析時(shí),首先應(yīng)該考慮的因素是?()A.促銷(xiāo)活動(dòng)B.數(shù)據(jù)錄入錯(cuò)誤C.市場(chǎng)需求突然增加D.競(jìng)爭(zhēng)對(duì)手表現(xiàn)不佳6、假設(shè)我們有一組銷(xiāo)售數(shù)據(jù),要分析不同產(chǎn)品類(lèi)別的銷(xiāo)售額在總銷(xiāo)售額中的占比情況,以下哪種圖表最能直觀(guān)地展示結(jié)果?()A.折線(xiàn)圖B.柱狀圖C.餅圖D.箱線(xiàn)圖7、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類(lèi)B.MinMaxScaler類(lèi)C.Normalizer類(lèi)D.以上都是8、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)量可以幫助我們更好地理解數(shù)據(jù)。關(guān)于均值、中位數(shù)和眾數(shù),以下描述錯(cuò)誤的是:()A.均值容易受到極端值的影響B(tài).中位數(shù)是將數(shù)據(jù)排序后位于中間位置的數(shù)值C.眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,一定唯一D.對(duì)于偏態(tài)分布的數(shù)據(jù),中位數(shù)可能比均值更能反映數(shù)據(jù)的中心位置9、在數(shù)據(jù)分析的社交網(wǎng)絡(luò)分析中,假設(shè)要研究一個(gè)社交平臺(tái)上用戶(hù)之間的關(guān)系和信息傳播。以下哪個(gè)指標(biāo)或概念對(duì)于理解網(wǎng)絡(luò)結(jié)構(gòu)和影響力可能是重要的?()A.度中心性,衡量節(jié)點(diǎn)的連接數(shù)量B.介數(shù)中心性,反映節(jié)點(diǎn)在路徑中的重要性C.接近中心性,體現(xiàn)節(jié)點(diǎn)與其他節(jié)點(diǎn)的接近程度D.不考慮網(wǎng)絡(luò)結(jié)構(gòu),只關(guān)注用戶(hù)發(fā)布的內(nèi)容10、數(shù)據(jù)挖掘在發(fā)現(xiàn)潛在模式和知識(shí)方面具有重要作用。假設(shè)要從電商網(wǎng)站的用戶(hù)購(gòu)買(mǎi)記錄中挖掘用戶(hù)的購(gòu)買(mǎi)行為模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,有助于推薦系統(tǒng)的構(gòu)建B.決策樹(shù)算法不適合處理這種大量且復(fù)雜的用戶(hù)購(gòu)買(mǎi)數(shù)據(jù)C.聚類(lèi)分析不能用于區(qū)分具有不同購(gòu)買(mǎi)行為的用戶(hù)群體D.神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)挖掘中應(yīng)用有限,效果不如傳統(tǒng)方法11、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的評(píng)估指標(biāo)有很多,其中準(zhǔn)確性是一個(gè)重要的指標(biāo)。以下關(guān)于準(zhǔn)確性的描述中,錯(cuò)誤的是?()A.準(zhǔn)確性是指數(shù)據(jù)與實(shí)際情況的符合程度B.準(zhǔn)確性可以通過(guò)計(jì)算數(shù)據(jù)的誤差率來(lái)衡量C.提高數(shù)據(jù)的準(zhǔn)確性可以通過(guò)數(shù)據(jù)清洗和驗(yàn)證等方法來(lái)實(shí)現(xiàn)D.數(shù)據(jù)的準(zhǔn)確性只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)分析的方法和工具無(wú)關(guān)12、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評(píng)估。以下關(guān)于結(jié)果解釋和評(píng)估的描述中,錯(cuò)誤的是?()A.結(jié)果解釋?xiě)?yīng)該結(jié)合問(wèn)題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評(píng)估應(yīng)該使用客觀(guān)的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評(píng)價(jià)和判斷C.結(jié)果解釋和評(píng)估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿(mǎn)足不同的需求D.結(jié)果解釋和評(píng)估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無(wú)需考慮數(shù)據(jù)的質(zhì)量和可靠性13、當(dāng)分析一個(gè)金融投資組合的績(jī)效數(shù)據(jù),包括不同資產(chǎn)的收益率、風(fēng)險(xiǎn)指標(biāo)、相關(guān)性等,以?xún)?yōu)化投資組合配置。以下哪個(gè)原則可能是在風(fēng)險(xiǎn)和收益平衡中需要首要考慮的?()A.最大化收益率B.最小化風(fēng)險(xiǎn)C.符合投資者的風(fēng)險(xiǎn)偏好D.以上都不是14、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測(cè)未來(lái)一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型15、數(shù)據(jù)分析中的異常檢測(cè)用于識(shí)別數(shù)據(jù)中的異常值或異常模式。假設(shè)你在分析一家公司的財(cái)務(wù)數(shù)據(jù),以檢測(cè)可能的欺詐行為。以下關(guān)于異常檢測(cè)方法的選擇,哪一項(xiàng)是最具挑戰(zhàn)性的?()A.基于統(tǒng)計(jì)的方法,如設(shè)定閾值來(lái)判斷異常B.利用機(jī)器學(xué)習(xí)算法,如孤立森林,自動(dòng)識(shí)別異常C.結(jié)合領(lǐng)域知識(shí)和人工判斷來(lái)確定異常D.完全依賴(lài)數(shù)據(jù)的直觀(guān)觀(guān)察來(lái)發(fā)現(xiàn)異常16、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的營(yíng)銷(xiāo)策略是否有效。以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不正確的?()A.零假設(shè)通常表示沒(méi)有差異或沒(méi)有效果B.通過(guò)計(jì)算檢驗(yàn)統(tǒng)計(jì)量和p值來(lái)決定是否拒絕零假設(shè)C.p值越小,說(shuō)明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗(yàn)的結(jié)果一定能夠準(zhǔn)確地反映實(shí)際情況,不存在誤差17、在數(shù)據(jù)分析的過(guò)程中,需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,例如將不同單位和量級(jí)的數(shù)據(jù)轉(zhuǎn)換為統(tǒng)一的尺度。以下哪種情況可能更需要進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化?()A.數(shù)據(jù)的分布比較均勻B.數(shù)據(jù)的量級(jí)差異較大C.數(shù)據(jù)的類(lèi)型比較單一D.以上都不是18、數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。以下關(guān)于假設(shè)檢驗(yàn)的描述,錯(cuò)誤的是:()A.原假設(shè)和備擇假設(shè)是相互對(duì)立的B.當(dāng)P值小于顯著性水平時(shí),拒絕原假設(shè)C.第一類(lèi)錯(cuò)誤是指錯(cuò)誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類(lèi)錯(cuò)誤19、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)用于初步了解數(shù)據(jù)的特征和規(guī)律。假設(shè)要對(duì)一個(gè)新的數(shù)據(jù)集進(jìn)行EDA,以下關(guān)于EDA的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)繪制直方圖、箱線(xiàn)圖等圖形來(lái)觀(guān)察數(shù)據(jù)的分布情況B.計(jì)算數(shù)據(jù)的基本統(tǒng)計(jì)量,如均值、中位數(shù)、眾數(shù)等,有助于了解數(shù)據(jù)的集中趨勢(shì)和離散程度C.EDA只是一個(gè)初步的過(guò)程,對(duì)后續(xù)的深入分析和建模作用不大D.發(fā)現(xiàn)數(shù)據(jù)中的異常值和缺失值,并思考它們可能的原因和影響20、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷(xiāo)活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶(hù)流量、購(gòu)買(mǎi)轉(zhuǎn)化率和客戶(hù)滿(mǎn)意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀(guān)判斷二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的降維以提高計(jì)算效率和可視化效果?請(qǐng)闡述常見(jiàn)的降維方法和技術(shù),并舉例說(shuō)明。2、(本題5分)描述數(shù)據(jù)質(zhì)量評(píng)估的指標(biāo)體系,包括準(zhǔn)確性、完整性、一致性等,并說(shuō)明如何通過(guò)這些指標(biāo)來(lái)評(píng)估數(shù)據(jù)質(zhì)量和采取改進(jìn)措施。3、(本題5分)解釋什么是社交網(wǎng)絡(luò)分析,說(shuō)明其在社交媒體、人際關(guān)系等領(lǐng)域的應(yīng)用場(chǎng)景和常用方法,并舉例分析。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某共享單車(chē)企業(yè)掌握了車(chē)輛使用數(shù)據(jù)、用戶(hù)出行軌跡、熱點(diǎn)區(qū)域等信息。優(yōu)化車(chē)輛投放策略,提高車(chē)輛利用率和用戶(hù)體驗(yàn)。2、(本題5分)某電商平臺(tái)積累了大量的商品評(píng)論數(shù)據(jù),包括文字評(píng)價(jià)和評(píng)分。探討如何對(duì)這些評(píng)論數(shù)據(jù)進(jìn)行情感分析,了解用戶(hù)對(duì)商品的滿(mǎn)意度。3、(本題5分)某社交媒體平臺(tái)記錄了用戶(hù)的關(guān)注關(guān)系、互動(dòng)頻率、內(nèi)容發(fā)布時(shí)間等數(shù)據(jù)。探討如何依據(jù)這些數(shù)據(jù)發(fā)現(xiàn)社交網(wǎng)絡(luò)中的關(guān)鍵節(jié)點(diǎn)和傳播規(guī)律。4、(本題5分)某在線(xiàn)手工制作材料銷(xiāo)售平臺(tái)記錄了材料銷(xiāo)售數(shù)據(jù)、用戶(hù)作品分享、熱門(mén)手工類(lèi)型等。推出熱門(mén)手工材料套餐和教程。5、(本題5分)一家物流公司的冷鏈運(yùn)輸業(yè)務(wù)記錄了運(yùn)輸數(shù)據(jù),包括貨物種類(lèi)、運(yùn)輸距離、溫度要求、運(yùn)輸成本等。

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論