蘭州市重點中學2025屆高考數學考前最后一卷預測卷含解析_第1頁
蘭州市重點中學2025屆高考數學考前最后一卷預測卷含解析_第2頁
蘭州市重點中學2025屆高考數學考前最后一卷預測卷含解析_第3頁
蘭州市重點中學2025屆高考數學考前最后一卷預測卷含解析_第4頁
蘭州市重點中學2025屆高考數學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

蘭州市重點中學2025屆高考數學考前最后一卷預測卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,點是上一點,,則()A. B. C. D.2.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是13.若為虛數單位,網格紙上小正方形的邊長為1,圖中復平面內點表示復數,則表示復數的點是()A.E B.F C.G D.H4.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面5.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.6.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.7.函數的部分圖象大致為()A. B.C. D.8.已知為定義在上的偶函數,當時,,則()A. B. C. D.9.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.10.在平面直角坐標系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.11.已知函數是上的減函數,當最小時,若函數恰有兩個零點,則實數的取值范圍是()A. B.C. D.12.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從2、3、5、7、11、13這六個質數中任取兩個數,這兩個數的和仍是質數的概率是________(結果用最簡分數表示)14.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.15.函數的極大值為________.16.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數=____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.18.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.19.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.20.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統(tǒng)計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.21.(12分)已知公比為正數的等比數列的前項和為,且,.(1)求數列的通項公式;(2)設,求數列的前項和.22.(10分)已知函數.(Ⅰ)求函數的單調區(qū)間;(Ⅱ)當時,求函數在上最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.2、A【解析】

根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區(qū)間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區(qū)間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.3、C【解析】

由于在復平面內點的坐標為,所以,然后將代入化簡后可找到其對應的點.【詳解】由,所以,對應點.故選:C【點睛】此題考查的是復數與復平面內點的對就關系,復數的運算,屬于基礎題.4、B【解析】

本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.5、D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.6、C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.7、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況?!驹斀狻?,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。8、D【解析】

判斷,利用函數的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數的奇偶性求值,意在考查學生對于函數性質的靈活運用.9、C【解析】

由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.10、A【解析】

由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構造關于的方程或不等式,本題是一道容易題.11、A【解析】

首先根據為上的減函數,列出不等式組,求得,所以當最小時,,之后將函數零點個數轉化為函數圖象與直線交點的個數問題,畫出圖形,數形結合得到結果.【詳解】由于為上的減函數,則有,可得,所以當最小時,,函數恰有兩個零點等價于方程有兩個實根,等價于函數與的圖像有兩個交點.畫出函數的簡圖如下,而函數恒過定點,數形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數的問題,涉及到的知識點有分段函數在定義域上單調減求參數的取值范圍,根據函數零點個數求參數的取值范圍,數形結合思想的應用,屬于中檔題目.12、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數關系,兩角和的正弦公式與誘導公式,解題時要根據已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依據古典概型的計算公式,分別求“任取兩個數”和“任取兩個數,和是質數”的事件數,計算即可?!驹斀狻俊叭稳蓚€數”的事件數為,“任取兩個數,和是質數”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數,這兩個數的和仍是質數的概率是。【點睛】本題主要考查古典概型的概率求法。14、【解析】

設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結合三角形的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結構特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結構特征,求得外接球的半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.15、【解析】

對函數求導,根據函數單調性,即可容易求得函數的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數有極大值.故答案為:.【點睛】本題考查利用導數研究函數的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.16、或1【解析】

利用導數的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數求切線方程,以及直線方程的運用,三角形的面積求法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數方程與普通方程的轉化及參數方程的基本性質、點到直線的距離公式等,屬于中檔題.18、(1)(2)最大值;最小值.【解析】

(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數方程,求解點到直線的距離公式,結合三角函數知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數方法,側重考查數學運算的核心素養(yǎng).19、(1)(2)【解析】

(1)直接利用極坐標公式計算得到答案(2)設,,根據三角函數的有界性得到答案.【詳解】(1)因為,所以,因為所以直線的直角坐標方程為.(2)由題意可設,則點到直線的距離.因為,所以,因為,故的最小值為.【點睛】本題考查了極坐標方程,參數方程,意在考查學生的計算能力和轉化能力.20、(1),,,中位數;(2)①三層中抽取的人數分別為2,5,13;②【解析】

(1)根據頻率分布直方表的性質,即可求得,得到,,再結合中位數的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據抽樣比,求得在三層中抽取的人數;②由①知,設內被抽取的學生分別為,內被抽取的學生分別為,利用列舉法得到基本事件的總數,利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數為小時,則,解得,即一周課外讀書時間的中位數約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數分別為20,50,130,所以從,,三層中抽取的人數分別為2,5,13.②由①知,在,兩層中共抽取7人,設內被抽取的學生分別為,內被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質,中位數的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.21、(1)(2)【解析】

(1)判斷公比不為1,運用等比數列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數列的錯位相減法求和,以及等比數列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數的等比數列的前

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論