版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河北省唐山一中等五校高考數(shù)學(xué)二模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.集合,,則()A. B. C. D.2.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知,,分別為內(nèi)角,,的對(duì)邊,,,的面積為,則()A. B.4 C.5 D.4.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.5.三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱(chēng)為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱(chēng)為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.6.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則()A. B. C. D.7.命題“”的否定為()A. B.C. D.8.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開(kāi)家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開(kāi)家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開(kāi)家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.9.下列圖形中,不是三棱柱展開(kāi)圖的是()A. B. C. D.10.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.11.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.1212.下圖中的圖案是我國(guó)古代建筑中的一種裝飾圖案,形若銅錢(qián),寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為_(kāi)_____.14.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.15.如圖,四面體的一條棱長(zhǎng)為,其余棱長(zhǎng)均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為_(kāi)___.16.設(shè),滿(mǎn)足約束條件,則的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等差數(shù)列滿(mǎn)足,.(l)求等差數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線的方程.(3)已知分別在,處取得極值,求證:.19.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F(xiàn)分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).求證:(1)直線平面EFG;(2)直線平面SDB.20.(12分)已知曲線,直線:(為參數(shù)).(I)寫(xiě)出曲線的參數(shù)方程,直線的普通方程;(II)過(guò)曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.21.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過(guò)程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.22.(10分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問(wèn)軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.2、B【解析】
利用充分必要條件的定義可判斷兩個(gè)條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【點(diǎn)睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來(lái)考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.3、D【解析】
由正弦定理可知,從而可求出.通過(guò)可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點(diǎn)睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過(guò)正弦定理結(jié)合已知條件,得到角的正弦值余弦值.4、C【解析】
利用復(fù)數(shù)的除法運(yùn)算法則進(jìn)行化簡(jiǎn),再由復(fù)數(shù)模的定義求解即可.【詳解】因?yàn)?所以,由復(fù)數(shù)模的定義知,.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算法則和復(fù)數(shù)的模;考查運(yùn)算求解能力;屬于基礎(chǔ)題.5、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個(gè)連續(xù)變量可建立與長(zhǎng)度有關(guān)的幾何概型,只需把這個(gè)變量放在數(shù)軸上即可;(2)若一個(gè)隨機(jī)事件需要用兩個(gè)變量來(lái)描述,則可用這兩個(gè)變量的有序?qū)崝?shù)對(duì)來(lái)表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個(gè)隨機(jī)事件需要用三個(gè)連續(xù)變量來(lái)描述,則可用這三個(gè)變量組成的有序數(shù)組來(lái)表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.6、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算求解能力,屬于基礎(chǔ)題.7、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點(diǎn)睛】本題考查全稱(chēng)命題的否定,屬于基礎(chǔ)題.8、D【解析】
這是幾何概型,畫(huà)出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿(mǎn)足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.9、C【解析】
根據(jù)三棱柱的展開(kāi)圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開(kāi)圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開(kāi)圖的判斷,屬于基礎(chǔ)題.10、C【解析】
根據(jù)準(zhǔn)線的方程寫(xiě)出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以?huà)佄锞€方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.11、B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B12、C【解析】令圓的半徑為1,則,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運(yùn)用直線的點(diǎn)斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點(diǎn)睛】本題考查運(yùn)用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點(diǎn)處的切線方程,關(guān)鍵在于求出在切點(diǎn)處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.14、【解析】
利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.15、(或?qū)懗?【解析】試題分析:設(shè),取中點(diǎn)則,因此,所以,因?yàn)樵趩握{(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點(diǎn):函數(shù)最值,函數(shù)單調(diào)區(qū)間16、29【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過(guò)點(diǎn)A時(shí),半徑最大,此時(shí)也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿(mǎn)的首項(xiàng)為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過(guò)裂項(xiàng)求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因?yàn)?,所?所以.18、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見(jiàn)解析.【解析】
(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡(jiǎn)為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域?yàn)?,?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),切線的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個(gè)不等正根.則,解得:,且,.,,,即不等式成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識(shí);本題中證明不等式的關(guān)鍵是能夠通過(guò)極值點(diǎn)的定義將問(wèn)題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗?wèn)題.19、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,所以O(shè)為AC的中點(diǎn),H為OC的中點(diǎn),由E、F為DC、BC的中點(diǎn),再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因?yàn)閭?cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因?yàn)榈酌鍭BCD是菱形,所以,因?yàn)?所以平面SDB.【點(diǎn)睛】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.20、(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過(guò)點(diǎn)作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問(wèn)題轉(zhuǎn)化為橢圓上的點(diǎn),到定直線的最大值與最小值問(wèn)題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點(diǎn)到的距離為.則.其中為銳角,且.當(dāng)時(shí),取到最大值,最大值為.當(dāng)時(shí),取到最小值,最小值為.【考點(diǎn)定位】1、橢圓和直線的參數(shù)方程;2、點(diǎn)到直線的距離公式;3、解直角三角形.21、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡(jiǎn)得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達(dá)定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點(diǎn)睛】本題考查了極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)和普通方程的互化,以及參數(shù)方程的綜合知識(shí),結(jié)合等比數(shù)列,熟練運(yùn)用知識(shí),屬于較易題.22、(1);(2)見(jiàn)解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年門(mén)衛(wèi)安全管理協(xié)議書(shū):全面安全保障合同
- 2024年度通信設(shè)備獨(dú)家代理銷(xiāo)售合同3篇
- 2024外墻保溫材料綠色建筑認(rèn)證與技術(shù)研發(fā)合作合同協(xié)議3篇
- 浸潤(rùn)式美育體驗(yàn)的核心特點(diǎn)
- 2024年度口腔科醫(yī)療健康保險(xiǎn)合同3篇
- 2024年度企業(yè)財(cái)務(wù)預(yù)算編制與執(zhí)行咨詢(xún)服務(wù)合同3篇
- 2024年瓷磚設(shè)計(jì)創(chuàng)新與技術(shù)研發(fā)合作協(xié)議3篇
- 2024年度委托擔(dān)保個(gè)人房屋租賃貸款協(xié)議3篇
- 2024年度塑膠運(yùn)動(dòng)場(chǎng)地施工責(zé)任分配合同2篇
- 內(nèi)蒙古大學(xué)創(chuàng)業(yè)學(xué)院《食品基因工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 北師大版四年級(jí)上冊(cè)書(shū)法練習(xí)指導(dǎo)-教案
- 《規(guī)律作息-健康睡眠》主題班會(huì)課件
- Unit5 Our New rooms Lesson1(教學(xué)設(shè)計(jì))2024-2025學(xué)年重大版英語(yǔ)五年級(jí)上冊(cè)
- 2024至2030年中國(guó)采棉機(jī)行業(yè)深度調(diào)研及投資戰(zhàn)略分析報(bào)告
- 英語(yǔ)B級(jí)單詞大全
- 智能充電站轉(zhuǎn)讓協(xié)議書(shū)范本
- 清醒俯臥位通氣護(hù)理專(zhuān)家共識(shí)
- 人教版部編道德與法治九上1.1《堅(jiān)持改革開(kāi)放》說(shuō)課稿
- 低壓不停電換表接插件技術(shù)規(guī)范
- 2024版烏魯木齊二手房買(mǎi)賣(mài)合同
- 跨學(xué)科教學(xué)設(shè)計(jì)-《軸對(duì)稱(chēng)圖形》
評(píng)論
0/150
提交評(píng)論