




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省白山市第七中學高三第六次模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-12.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.3.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.4.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.5.已知復數(shù)滿足,則()A. B. C. D.6.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.7.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.508.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.9.設為銳角,若,則的值為()A. B. C. D.10.關于圓周率π,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.11.已知集合,集合,則()A. B. C. D.12.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.(5分)某膳食營養(yǎng)科研機構為研究牛蛙體內(nèi)的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.14.某市高三理科學生有名,在一次調(diào)研測試中,數(shù)學成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數(shù)為__________.15.若,則__________.16.在中,內(nèi)角所對的邊分別是.若,,則__,面積的最大值為___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?18.(12分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.19.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線,的交點分別為、(、異于原點),當斜率時,求的最小值.20.(12分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費用(百萬元)2361021131518產(chǎn)品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關關系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.21.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.22.(10分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.2、A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎題.3、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數(shù)在上單調(diào)遞增,當時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.【點睛】本題考查了導數(shù)在判斷函數(shù)單調(diào)性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.4、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關鍵是要能由三視圖解析出原幾何體,從而解決問題.5、A【解析】
由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.6、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.7、C【解析】
先寫出的通項公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點睛】本題考查二項展開式中某一項系數(shù)的求解,關鍵是對通項公式的熟練使用,屬基礎題.8、D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導公式,二倍角公式的應用求值.9、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯(lián)系.10、D【解析】
由試驗結果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據(jù)題意知,名同學取對都小于的正實數(shù)對,即,對應區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據(jù)題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.11、C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎題.12、C【解析】
①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點的距離最大值;③將面積轉(zhuǎn)化為的關系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.14、【解析】
由題意結合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態(tài)分布曲線,屬于基礎題.15、【解析】
因為,由二倍角公式得到,故得到.故答案為.16、1【解析】
由正弦定理,結合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因為,所以由正弦定理可得,所以;所以,當,即時,三角形面積最大.故答案為(1).1(2).【點睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數(shù)學期望,意在考查學生的計算能力和應用能力.18、(1)見解析;(2)【解析】
(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數(shù)列是首項為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.19、(1)的極坐標方程為;曲線的直角坐標方程.(2)【解析】
(1)消去參數(shù),可得曲線的直角坐標方程,再利用極坐標與直角坐標的互化,即可求解.(2)解法1:設直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標方程,得,得出,利用基本不等式,即可求解;解法2:設直線的極坐標方程為,分別代入曲線,的極坐標方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標方程為,即,則曲線的極坐標方程為,即,又因為曲線的極坐標方程為,即,根據(jù),代入即可求解曲線的直角坐標方程.(2)解法1:設直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標方程得:,解得,,,,,即,,,,當且僅當,即時取等號,故的最小值為.解法2:設直線的極坐標方程為),代入曲線的極坐標方程,得,,把直線的參數(shù)方程代入曲線的極坐標方程得:,,即,,曲線的參,即,,,,當且僅當,即時取等號,故的最小值為.【點睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標方程與直角坐標方程點互化,以及直線參數(shù)方程的應用和極坐標方程的應用,其中解答中熟記互化公式,合理應用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數(shù)b和a,即可寫出回歸直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《腔鏡技術簡介》課件
- 四下營養(yǎng)午餐教學設計及評課
- 新質(zhì)生產(chǎn)力造紙
- 新質(zhì)生產(chǎn)力與物流
- 韋格納肉芽腫性鞏膜炎的臨床護理
- 人教版九年級化學上冊《二氧化碳制取的研究》思維導圖課件
- 2025年家裝工程合同范本
- 沈陽英語三年級試卷及答案
- 山東聊城中考試卷及答案
- 2025果園土地承包經(jīng)營權轉(zhuǎn)讓合同范本
- PTIO和ABTS自由基清除實驗操作指南-李熙燦-曾婧媛
- PCI患者的術后護理課件
- 2024年供應鏈可持續(xù)性培訓資料
- 丁麗娟《數(shù)值計算方法》五章課后實驗題答案(源程序很詳細-且運行無誤)
- WS-T 10001-2023 疾病預防控制機構實驗室儀器設備配置和管理
- 成人住院患者跌倒評估與預防(團體標準)解讀
- 通止規(guī)設計公差自動計算表
- 靜設備安裝質(zhì)量控制過程
- 橋梁亮化施工流程圖
- 深基坑巡視記錄
- 現(xiàn)代偵察監(jiān)視技術講課教案
評論
0/150
提交評論