2024屆遼寧省沈陽市第1高三下學期模擬試題(二)數(shù)學試題_第1頁
2024屆遼寧省沈陽市第1高三下學期模擬試題(二)數(shù)學試題_第2頁
2024屆遼寧省沈陽市第1高三下學期模擬試題(二)數(shù)學試題_第3頁
2024屆遼寧省沈陽市第1高三下學期模擬試題(二)數(shù)學試題_第4頁
2024屆遼寧省沈陽市第1高三下學期模擬試題(二)數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆遼寧省沈陽市第1高三下學期模擬試題(二)數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則的虛部是()A. B. C. D.2.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.3.已知i是虛數(shù)單位,則1+iiA.-12+32i4.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.25.下列與函數(shù)定義域和單調性都相同的函數(shù)是()A. B. C. D.6.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.7.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.38.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.9.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交10.“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降11.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.12.已知集合,,則()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.14.若的展開式中只有第六項的二項式系數(shù)最大,則展開式中各項的系數(shù)和是________.15.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙16.設滿足約束條件,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.18.(12分)設函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.19.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.20.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數(shù)學期望;②小張打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,小張應選擇哪家公司應聘?說明你的理由.21.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)若,證明.22.(10分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

通過復數(shù)的乘除運算法則化簡求解復數(shù)為:的形式,即可得到復數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數(shù)的代數(shù)形式的混合運算,復數(shù)的基本概念,屬于基礎題.2.C【解析】

由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎題.3.D【解析】

利用復數(shù)的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,屬于基礎題。4.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質的應用,屬于基礎題.5.C【解析】

分析函數(shù)的定義域和單調性,然后對選項逐一分析函數(shù)的定義域、單調性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調性,屬于基礎題.6.D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.7.A【解析】

將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎題.8.C【解析】

需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質,三角函數(shù)的性質,數(shù)形結合思想,轉化與化歸思想,屬于中檔題9.D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.10.D【解析】

根據(jù)統(tǒng)計圖中數(shù)據(jù)的含義進行判斷即可.【詳解】對A項,由統(tǒng)計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統(tǒng)計圖可得,2015年出口額最少,則B正確;對C項,由統(tǒng)計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統(tǒng)計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【點睛】本題主要考查了根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖解決實際問題,屬于基礎題.11.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.12.D【解析】

首先求出集合,再根據(jù)補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.2.【解析】

由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結果:【點睛】本題考查了雙曲線和的標準方程及其性質,涉及到點到直線距離公式的考查,屬于基礎題.14.【解析】

由題意得出展開式中共有11項,;再令求得展開式中各項的系數(shù)和.【詳解】由的展開式中只有第六項的二項式系數(shù)最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數(shù)和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數(shù)和的求法,屬于基礎題.15.91【解析】

設共有選票張,且票對應張數(shù)為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【點睛】本題考查線性規(guī)劃的實際應用問題,關鍵是能夠根據(jù)已知條件構造出變量所滿足的關系式.16.【解析】

由題意畫出可行域,轉化目標函數(shù)為,數(shù)形結合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉化目標函數(shù)為,通過平移直線,數(shù)形結合可知:當直線過點A時,直線截距最大,z最??;當直線過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.18.(1)(2)證明見解析【解析】

(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當時,不等式為,解得當時,不等式為,解得當時,不等式為,解得∴原不等式的解集為(2)當且僅當即時取等號,∴,∴∵,∴,∴(當且僅當時取“”)同理可得,∴∴(當且僅當時取“”)【點睛】本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.19.(1)12(2)【解析】

(1)根據(jù)焦距得焦點坐標,結合橢圓上的點的坐標,根據(jù)定義;(2)求出橢圓的標準方程,設,聯(lián)立直線和橢圓,結合韋達定理表示出面積,即可求解最大值.【詳解】(1)設橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設,則,,,,,當且僅當在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據(jù)直線與橢圓的交點關系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.20.(1);(2)①分布列見解析,;②小張應選擇甲公司應聘.【解析】

(1)記抽取的3天送餐單數(shù)都不小于40為事件,可得(A)的值.(2)①設乙公司送餐員送餐單數(shù)為,可得當時,,以此類推可得:當時,當時,的值.當時,的值,同理可得:當時,.的所有可能取值.可得的分布列及其數(shù)學期望.②依題意,甲公司送餐員日平均送餐單數(shù).可得甲公司送餐員日平均工資,與乙數(shù)學期望比較即可得出.【詳解】解:(1)由表知,50天送餐單數(shù)中有30天的送餐單數(shù)不小于40單,記抽取的3天送餐單數(shù)都不小于40為事件,則.(2)①設乙公司送餐員的送餐單數(shù)為,日工資為元,則當時,;當時,;當時,;當時,;當時,.所以的分布列為228234240247254.②依題意,甲公司送餐員的日平均送餐單數(shù)為,所以甲公司送餐員的日平均工資為元,因為,所以小張應選擇甲公司應聘.【點睛】本題考查了隨機變量的分布列與數(shù)學期望、古典概率計算公式、組合計算公式,考查了推理能力與計算能力,屬于中檔題.21.(1)單調遞減區(qū)間為,,無單調遞增區(qū)間(2)證明見解析【解析】

(1)求導,根據(jù)導數(shù)的正負判斷單調性,(2)整理,化簡為,令,求的單調性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當,,單調遞減;當,,單調遞增;故,,,,故函數(shù)的單調遞減區(qū)間為,,無單調遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當時,,所以在上單調遞減,則,,則在上恒成立,所以在上單調遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論