版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆廣東省中山一中等七校聯(lián)合體重點(diǎn)中學(xué)高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.2.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.已知雙曲線的右焦點(diǎn)為,過(guò)原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長(zhǎng)交右支于點(diǎn),若,則雙曲線的離心率是()A. B. C. D.4.已知,且,則在方向上的投影為()A. B. C. D.5.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.6.已知向量,,若,則()A. B. C.-8 D.87.如圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.8.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.9.已知函,,則的最小值為()A. B.1 C.0 D.10.已知,,則的大小關(guān)系為()A. B. C. D.11.如果,那么下列不等式成立的是()A. B.C. D.12.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.14.已知數(shù)列中,為其前項(xiàng)和,,,則_________,_________.15.設(shè)復(fù)數(shù)滿足,則_________.16.若,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;(2)討論函數(shù)的單調(diào)性.18.(12分)某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了健身促銷活動(dòng),收費(fèi)標(biāo)準(zhǔn)如下:健身時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為20元(不足l小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人各自獨(dú)立地來(lái)該健身館健身,設(shè)甲、乙健身時(shí)間不超過(guò)1小時(shí)的概率分別為,,健身時(shí)間1小時(shí)以上且不超過(guò)2小時(shí)的概率分別為,,且兩人健身時(shí)間都不會(huì)超過(guò)3小時(shí).(1)設(shè)甲、乙兩人所付的健身費(fèi)用之和為隨機(jī)變量(單位:元),求的分布列與數(shù)學(xué)期望;(2)此促銷活動(dòng)推出后,健身館預(yù)計(jì)每天約有300人來(lái)參與健身活動(dòng),以這兩人健身費(fèi)用之和的數(shù)學(xué)期望為依據(jù),預(yù)測(cè)此次促銷活動(dòng)后健身館每天的營(yíng)業(yè)額.19.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個(gè)零點(diǎn).20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.21.(12分)改革開放年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問(wèn)卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識(shí)強(qiáng).求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;已知交通安全意識(shí)強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)用分層抽樣的方式從得分在分以下的樣本中抽取人,再?gòu)娜酥须S機(jī)選取人對(duì)未來(lái)一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中22.(10分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問(wèn)題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問(wèn)題.2、B【解析】
三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來(lái)求其體積,本題屬于基礎(chǔ)題.3、D【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,,根據(jù)對(duì)稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.4、C【解析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.5、B【解析】
由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長(zhǎng)的運(yùn)算,屬于基礎(chǔ)題.7、D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長(zhǎng)度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.8、C【解析】
根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)椋谶f增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.9、B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.10、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最?。欢蓪?duì)數(shù)換底公式化簡(jiǎn)可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對(duì)數(shù)式的化簡(jiǎn)變形,對(duì)數(shù)換底公式及基本不等式的簡(jiǎn)單應(yīng)用,作差法比較大小,屬于中檔題.11、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.12、A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.14、8(寫為也得分)【解析】
由,得,.當(dāng)時(shí),,所以,所以的奇數(shù)項(xiàng)是以1為首項(xiàng),以2為公比的等比數(shù)列;其偶數(shù)項(xiàng)是以2為首項(xiàng),以2為公比的等比數(shù)列.則,.15、.【解析】
利用復(fù)數(shù)的運(yùn)算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.16、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因?yàn)椋慈〉忍?hào)),所以最小值為.【點(diǎn)睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號(hào)的條件.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減.【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點(diǎn)的關(guān)系進(jìn)而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當(dāng)時(shí),,則切線的斜率為.又,則曲線在點(diǎn)的切線方程是,即.(2)的定義域是..①當(dāng)時(shí),,所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減;②當(dāng)時(shí),,所以當(dāng)和時(shí),;當(dāng)時(shí),,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當(dāng)時(shí),,所以在上恒成立.所以在上單調(diào)遞增;④當(dāng)時(shí),,所以和時(shí),;時(shí),.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點(diǎn),再根據(jù)極值點(diǎn)的大小關(guān)系分類討論即可.屬于??碱}.18、(1)見解析,40元(2)6000元【解析】
(1)甲、乙兩人所付的健身費(fèi)用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費(fèi)用之和共有9種情況,分情況計(jì)算即可(2)根據(jù)(1)結(jié)果求均值.【詳解】解:(1)由題設(shè)知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學(xué)期望(元)(2)此次促銷活動(dòng)后健身館每天的營(yíng)業(yè)額預(yù)計(jì)為:(元)【點(diǎn)睛】考查離散型隨機(jī)變量的分布列及其期望的求法,中檔題.19、見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時(shí),f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個(gè)零點(diǎn).顯然x∈(π,2π)時(shí),?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時(shí),f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點(diǎn).因?yàn)閒(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時(shí),f(x)>1,即f(x)在(?∞,?π)上也沒有零點(diǎn).故f(x)僅在,上各有一個(gè)零點(diǎn),即f(x)在R上有且僅有兩個(gè)零點(diǎn).20、(1)當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對(duì)求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對(duì)求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域?yàn)?,因?yàn)?,所以,?dāng)時(shí),令,得,令,得;當(dāng)時(shí),則,令,得,或,令,得;當(dāng)時(shí),,當(dāng)時(shí),則,令,得;綜上所述,當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時(shí),設(shè),又因?yàn)?,則,設(shè),則對(duì)于任意成立,所以在上是增函數(shù),所以對(duì)于,有,即,有,因?yàn)?,所以,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.21、,概率為;列聯(lián)表詳見解析,有
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版高科技研發(fā)中心合伙企業(yè)退股合同3篇
- 專屬授權(quán)合作細(xì)則合同(2024年度)一
- 二零二五年度船舶建造與船舶維修配件供應(yīng)合同范本4篇
- 2025年度油氣田打井設(shè)備租賃合同7篇
- 二零二五年度外墻涂料施工合同爭(zhēng)議解決協(xié)議2篇
- 2025年度煤礦安全生產(chǎn)監(jiān)管服務(wù)二零二五版合同4篇
- 二零二五版物流包裝材料研發(fā)生產(chǎn)合同3篇
- 2025年國(guó)際知識(shí)產(chǎn)權(quán)授權(quán)貿(mào)易合同標(biāo)準(zhǔn)范本4篇
- 2025年度汽車行業(yè)信息化解決方案供應(yīng)合同3篇
- 二零二五年度智能車庫(kù)租賃與車位共享服務(wù)合同7篇
- 寒假作業(yè)一年級(jí)上冊(cè)《數(shù)學(xué)每日一練》30次打卡
- 2024-2025學(xué)年九年級(jí)化學(xué)上冊(cè) 第二單元 單元測(cè)試卷(人教版)
- 2024年公共衛(wèi)生基本知識(shí)考試題庫(kù)(附含答案)
- 2024多級(jí)AO工藝污水處理技術(shù)規(guī)程
- 2024年江蘇省鹽城市中考數(shù)學(xué)試卷真題(含答案)
- DZ∕T 0287-2015 礦山地質(zhì)環(huán)境監(jiān)測(cè)技術(shù)規(guī)程(正式版)
- 2024年合肥市廬陽(yáng)區(qū)中考二模英語(yǔ)試題含答案
- 質(zhì)檢中心制度匯編討論版樣本
- 藥娘激素方案
- 提高靜脈留置使用率品管圈課件
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
評(píng)論
0/150
提交評(píng)論