




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省泰州市泰興一中2025屆高三第二次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.2.設(shè)拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.33.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.4.已知函數(shù),則不等式的解集為()A. B. C. D.5.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.36.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.7.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.8.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]9.已知為銳角,且,則等于()A. B. C. D.10.已知集合,則=()A. B. C. D.11.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.12.若復(fù)數(shù)滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是___________.14.在中,,,,則________,的面積為________.15.定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.16.在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.18.(12分)已知函數(shù)(1)當(dāng)時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.19.(12分)已知函數(shù)的最小正周期是,且當(dāng)時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).20.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關(guān)于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)).年份年份代號年利潤(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測該公司年(年份代號記為)的年利潤;(Ⅱ)當(dāng)統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預(yù)測的該公司年的年利潤視作該年利潤的實際值,現(xiàn)從年至年這年中隨機(jī)抽取年,求恰有年為級利潤年的概率.參考公式:,.21.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.22.(10分)某芯片公司對今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測評,該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分?jǐn)?shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在3個工程手機(jī)中進(jìn)行初測。若3個工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個工程手機(jī)中只要有2個評分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個工程手機(jī)中僅1個評分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個工程手機(jī)中進(jìn)行二測,二測時,2個工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個工程手機(jī)中只要有1個評分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機(jī)公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機(jī)中的測試費用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試,現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費為10萬元,試問預(yù)算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.2、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點到準(zhǔn)線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點的距離來求解.3、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.4、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.5、B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計算能力,屬于中檔題.6、A【解析】
由題可得出的坐標(biāo)為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標(biāo)為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.8、D【解析】
設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.9、C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎(chǔ)題.10、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎(chǔ)題.11、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.12、C【解析】
化簡得到,,再計算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于偶次根式中被開方數(shù)非負(fù),對數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.14、【解析】
利用余弦定理可求得的值,進(jìn)而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎(chǔ)題.15、【解析】
先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.16、【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;常數(shù),定值【解析】
(1)設(shè)出的坐標(biāo),利用以及,求得曲線的方程.(2)當(dāng)直線的斜率存在時,設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當(dāng)直線的斜率不存在時,驗證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當(dāng)直線的斜率存在時,設(shè)直線的方程為設(shè),由可得:由點到的距離為定值可得(為常數(shù))即得:即,又為定值時,,此時,且符合當(dāng)直線的斜率不存在時,設(shè)直線方程為由題可得,時,,經(jīng)檢驗,符合條件綜上可知,存在常數(shù),且定值【點睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運算求解能力,考查橢圓中的定值問題,屬于難題.18、(1);(2)【解析】
(1)當(dāng)時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當(dāng)時,由,可得,令,則只需,當(dāng)時,;當(dāng)時,;當(dāng)時,;故當(dāng)時,取得最小值,即的最大值為.(2)依題意,當(dāng)時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與計算能力.19、(1);(2)見解析.【解析】
(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結(jié)合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計算出的取值范圍,據(jù)此列表、描點、連線可得出函數(shù)在區(qū)間上的圖象.【詳解】(1)因為函數(shù)的最小正周期是,所以.又因為當(dāng)時,函數(shù)取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【點睛】本題考查正弦函數(shù)解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.20、(Ⅰ),該公司年年利潤的預(yù)測值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進(jìn)而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數(shù),然后利用組合計數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預(yù)測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應(yīng)估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機(jī)抽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理考試中文獻(xiàn)研究的重要性試題及答案
- 2025年注會考生分享經(jīng)驗試題及答案
- 農(nóng)村水利提升與可持續(xù)發(fā)展研究報告
- 木炭行業(yè)發(fā)展趨勢與未來市場潛力分析
- 特許金融分析師考試的實戰(zhàn)題目分析試題及答案
- 精準(zhǔn)施教推動思政課創(chuàng)新發(fā)展路徑
- 注會備考的誤區(qū)與常見問題分析試題及答案
- 明確項目目標(biāo)設(shè)定與達(dá)成路徑試題及答案
- 微生物檢驗中的防污染措施試題及答案
- 微生物檢驗技師考試重點試題及答案追蹤
- 初中數(shù)學(xué)課標(biāo)培訓(xùn)
- 2025年濟(jì)源職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫附答案
- 承包餐館協(xié)議書模板
- 《浙江省中藥飲片炮制規(guī)范》 2015年版
- 危險化學(xué)品事故應(yīng)急預(yù)案
- 第三方房屋抵押擔(dān)保合同
- 2025年山東建筑安全員《B證》考試題庫及答案
- 2025屆上海市黃浦區(qū)高三下學(xué)期二模政治試題(原卷版+解析版)
- 校園零星維修協(xié)議書
- 廣東省清遠(yuǎn)市清新區(qū)2025年中考一模語文試題(含答案)
- “燕園元培杯”2023-2024學(xué)年全國中學(xué)生地球科學(xué)奧林匹克競賽決賽試題詳解
評論
0/150
提交評論