浙江省蒼南縣巨人中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
浙江省蒼南縣巨人中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
浙江省蒼南縣巨人中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
浙江省蒼南縣巨人中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
浙江省蒼南縣巨人中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省蒼南縣巨人中學(xué)2025屆高三3月份模擬考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.2.設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.3.已知集合,,則等于()A. B. C. D.4.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.5.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③6.函數(shù)的大致圖象是A. B. C. D.7.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.8.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.9.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.10.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.11.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺12.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(

)A. B. C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)14.某公園劃船收費標準如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.15.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.16.已知數(shù)列的各項均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項公式_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設(shè)與交于,兩點,線段的中點為,求.18.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設(shè)點是曲線上不同兩點,如果在曲線上存在點,使得①;②曲線在點M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當時,函數(shù)是否存在“中值和諧切線”請說明理由20.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.21.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.22.(10分)在平面直角坐標系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

首先求得,然后根據(jù)復(fù)數(shù)乘法運算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復(fù)數(shù),則,所以A選項不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運算等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.2、A【解析】

由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】

解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.4、C【解析】

設(shè)線段的中點為,判斷出點的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.6、A【解析】

利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應(yīng)用,屬于中檔題.7、C【解析】

令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減.當時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.8、C【解析】

設(shè)公差為,則由題意可得,解得,可得.令

,可得

當時,,當時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,

則,解得

,.

,可得,故當時,,當時,,

故數(shù)列前項和中最小的是.故選:C.【點睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項公式的應(yīng)用,屬于中檔題.9、C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎(chǔ)題.10、D【解析】

“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉(zhuǎn)換,使問題易于求解.11、A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個四棱錐和1個直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計算是解題的關(guān)鍵.12、D【解析】

由成等差數(shù)列得,利用等比數(shù)列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對于等比數(shù)列的通項公式也要熟練.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

①∵,∴平面

,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.14、36010【解析】

列出所有租船的情況,分別計算出租金,由此能求出結(jié)果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實際應(yīng)用問題,屬于基礎(chǔ)題.15、【解析】

根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.16、【解析】

利用遞推關(guān)系,等比數(shù)列的通項公式即可求得結(jié)果.【詳解】因為,所以,因為是等比數(shù)列,所以數(shù)列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.【點睛】該題考查的是有關(guān)數(shù)列的問題,涉及到的知識點有根據(jù)遞推公式求數(shù)列的通項公式,屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數(shù)方程的標準形式代入曲線C的直角坐標方程,根據(jù)韋達定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設(shè)點P的直角坐標為(x,y),因為P的極坐標為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對應(yīng)的參數(shù),且t1+t2,依題意,點M對應(yīng)的參數(shù)為,所以|PM|=||.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.18、(1)(2)最大值;最小值.【解析】

(1)結(jié)合極坐標和直角坐標的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結(jié)合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉(zhuǎn)化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).19、(1)見解析(2)不存在,見解析【解析】

(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問題,即可說明.【詳解】(1)函數(shù)的定義域為,所以當時,;,所以函數(shù)在上單調(diào)遞增當時,①當時,函數(shù)在上遞增②,顯然無增區(qū)間;③當時,,函數(shù)在上遞增,綜上當函數(shù)在上單調(diào)遞增.當時函數(shù)在上單調(diào)遞增;當時函數(shù)無單調(diào)遞增區(qū)間當時函數(shù)在上單調(diào)遞增(2)假設(shè)函數(shù)存在“中值相依切線”設(shè)是曲線上不同的兩個點,且則曲線在點處的切線的斜率為,.令,則,單調(diào)遞增,,故無解,假設(shè)不成立綜上,假設(shè)不成立,所以不存在“中值相依切線”【點睛】本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)的應(yīng)用以及分類討論和轉(zhuǎn)化思想,屬于中檔題.20、(1);(2)【解析】

(1)由已知條件和正弦定理進行邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論