




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)沈陽(yáng)城市學(xué)院
《智能系統(tǒng)軟件工程》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的自然語(yǔ)言生成中,故事生成是一個(gè)富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計(jì)算機(jī)生成一個(gè)富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會(huì)背景D.故事生成不需要考慮讀者的喜好和期望2、在人工智能的模型訓(xùn)練中,數(shù)據(jù)預(yù)處理是重要的環(huán)節(jié)。假設(shè)要訓(xùn)練一個(gè)用于圖像識(shí)別的模型,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)清洗可以去除噪聲和異常值,提高數(shù)據(jù)質(zhì)量B.數(shù)據(jù)增強(qiáng)可以通過(guò)旋轉(zhuǎn)、縮放等操作增加數(shù)據(jù)的多樣性C.數(shù)據(jù)歸一化可以將數(shù)據(jù)的值范圍統(tǒng)一,有助于模型的訓(xùn)練和收斂D.數(shù)據(jù)預(yù)處理對(duì)模型的性能影響不大,可以忽略這一環(huán)節(jié),直接進(jìn)行模型訓(xùn)練3、人工智能中的機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)等。假設(shè)要對(duì)一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過(guò)擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無(wú)監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動(dòng)將數(shù)據(jù)分為不同的簇C.強(qiáng)化學(xué)習(xí)中的Q-Learning算法,通過(guò)與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對(duì)未標(biāo)記數(shù)據(jù)進(jìn)行分類4、在自然語(yǔ)言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時(shí),以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過(guò)查找預(yù)定義的情感詞來(lái)判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動(dòng)學(xué)習(xí)語(yǔ)言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動(dòng)化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)5、假設(shè)在一個(gè)智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑和資源推薦。為了準(zhǔn)確評(píng)估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識(shí)掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是6、人工智能在醫(yī)療影像診斷中的應(yīng)用越來(lái)越廣泛。假設(shè)利用人工智能輔助醫(yī)生診斷X光片,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.能夠快速檢測(cè)出影像中的異常區(qū)域,提高診斷效率B.可以為醫(yī)生提供量化的分析指標(biāo)和輔助診斷建議C.人工智能的診斷結(jié)果總是準(zhǔn)確無(wú)誤的,醫(yī)生可以完全依賴D.醫(yī)生的專業(yè)知識(shí)和臨床經(jīng)驗(yàn)在結(jié)合人工智能診斷結(jié)果時(shí)仍然非常重要7、在人工智能的發(fā)展中,硬件的支持對(duì)于提高計(jì)算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個(gè)大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢(shì)?()A.CPUB.GPUC.TPUD.FPGA8、人工智能在醫(yī)療領(lǐng)域有著廣泛的應(yīng)用前景,例如疾病診斷、藥物研發(fā)和醫(yī)療影像分析等。以下關(guān)于人工智能在醫(yī)療領(lǐng)域應(yīng)用的描述,不正確的是()A.人工智能可以通過(guò)分析大量的醫(yī)療數(shù)據(jù),輔助醫(yī)生進(jìn)行疾病的早期診斷和預(yù)測(cè)B.在藥物研發(fā)中,人工智能可以加速藥物篩選和優(yōu)化藥物配方的過(guò)程C.雖然人工智能在醫(yī)療領(lǐng)域有諸多應(yīng)用,但它不能替代醫(yī)生的專業(yè)判斷和臨床經(jīng)驗(yàn)D.人工智能在醫(yī)療領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不存在任何風(fēng)險(xiǎn)和挑戰(zhàn)9、在人工智能的圖像識(shí)別任務(wù)中,對(duì)抗樣本的存在對(duì)模型的安全性構(gòu)成威脅。假設(shè)一個(gè)圖像識(shí)別模型容易受到對(duì)抗樣本的攻擊,導(dǎo)致錯(cuò)誤的分類結(jié)果。以下哪種方法在提高模型對(duì)對(duì)抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對(duì)抗訓(xùn)練D.以上方法綜合運(yùn)用10、在一個(gè)利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識(shí)別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對(duì)于實(shí)時(shí)處理和準(zhǔn)確識(shí)別起到重要作用?()A.快速目標(biāo)檢測(cè)算法B.高效的特征提取方法C.分布式計(jì)算框架D.以上都是11、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個(gè)智能體在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.智能體通過(guò)隨機(jī)嘗試不同的動(dòng)作來(lái)學(xué)習(xí),不需要任何獎(jiǎng)勵(lì)反饋B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)智能體的學(xué)習(xí)效果沒(méi)有影響,只要有足夠的訓(xùn)練時(shí)間就能學(xué)會(huì)最優(yōu)策略C.強(qiáng)化學(xué)習(xí)算法能夠保證智能體在有限的時(shí)間內(nèi)找到絕對(duì)最優(yōu)的決策策略D.智能體在學(xué)習(xí)過(guò)程中會(huì)不斷調(diào)整策略以最大化累積獎(jiǎng)勵(lì)12、自然語(yǔ)言處理是人工智能的重要研究方向之一。假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),以下關(guān)于自然語(yǔ)言處理在該系統(tǒng)中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞法分析、句法分析和語(yǔ)義理解等技術(shù)有助于理解用戶輸入的問(wèn)題B.機(jī)器翻譯技術(shù)可以將用戶的問(wèn)題翻譯成其他語(yǔ)言,以便更好地處理C.利用大規(guī)模的語(yǔ)料庫(kù)和預(yù)訓(xùn)練模型,可以提高回答的準(zhǔn)確性和合理性D.自然語(yǔ)言處理技術(shù)能夠完美理解人類語(yǔ)言的所有含義和語(yǔ)境,不會(huì)出現(xiàn)誤解13、在人工智能的自動(dòng)駕駛道德決策問(wèn)題中,假設(shè)自動(dòng)駕駛汽車(chē)面臨一個(gè)無(wú)法避免的碰撞場(chǎng)景,以下關(guān)于道德決策的描述,正確的是:()A.可以制定一套通用的道德規(guī)則,讓自動(dòng)駕駛汽車(chē)在所有情況下遵循B.道德決策應(yīng)該完全由汽車(chē)制造商決定,用戶沒(méi)有參與的權(quán)利C.不同的文化和價(jià)值觀可能導(dǎo)致對(duì)自動(dòng)駕駛道德決策的不同看法D.自動(dòng)駕駛汽車(chē)的道德決策不會(huì)受到法律和社會(huì)輿論的影響14、假設(shè)要開(kāi)發(fā)一個(gè)能夠輔助醫(yī)生進(jìn)行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗(yàn)報(bào)告等。在這個(gè)過(guò)程中,以下哪個(gè)環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性15、在人工智能的研究中,模型的評(píng)估指標(biāo)對(duì)于衡量模型性能非常重要。假設(shè)要評(píng)估一個(gè)圖像分類模型的性能。以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評(píng)估指標(biāo)之一,表示正確分類的樣本比例B.召回率衡量了模型能夠正確識(shí)別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好16、人工智能在醫(yī)療領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨著數(shù)據(jù)隱私和安全性的挑戰(zhàn)。假設(shè)一個(gè)醫(yī)療機(jī)構(gòu)要使用人工智能技術(shù)分析患者的醫(yī)療數(shù)據(jù)來(lái)輔助診斷疾病,同時(shí)要確?;颊邤?shù)據(jù)不被泄露和濫用。以下哪種技術(shù)或方法在保障數(shù)據(jù)安全和隱私方面最為有效?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.建立嚴(yán)格的訪問(wèn)控制機(jī)制D.以上方法綜合運(yùn)用17、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個(gè)用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對(duì)數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法18、可解釋性是人工智能模型面臨的一個(gè)重要問(wèn)題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過(guò)程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對(duì)于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級(jí)的差異19、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過(guò)估計(jì)什么來(lái)進(jìn)行決策?()A.狀態(tài)價(jià)值B.動(dòng)作價(jià)值C.策略D.獎(jiǎng)勵(lì)20、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)管理中具有潛在應(yīng)用價(jià)值。假設(shè)一家銀行要利用人工智能評(píng)估客戶的信用風(fēng)險(xiǎn),以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以分析客戶的交易記錄、財(cái)務(wù)狀況等多維度數(shù)據(jù),進(jìn)行信用評(píng)估B.深度學(xué)習(xí)模型能夠自動(dòng)提取數(shù)據(jù)中的隱藏特征,提高信用評(píng)估的準(zhǔn)確性C.人工智能評(píng)估的信用結(jié)果可以完全取代傳統(tǒng)的信用評(píng)估方法,無(wú)需人工審核D.為了保證評(píng)估的公正性和可靠性,需要對(duì)人工智能模型進(jìn)行定期監(jiān)測(cè)和驗(yàn)證21、圖像識(shí)別是人工智能的一個(gè)重要應(yīng)用領(lǐng)域。假設(shè)一個(gè)安防系統(tǒng)需要通過(guò)攝像頭實(shí)時(shí)識(shí)別出特定的人物或物體。以下關(guān)于圖像識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.深度學(xué)習(xí)算法在圖像識(shí)別中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.圖像識(shí)別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會(huì)對(duì)識(shí)別結(jié)果產(chǎn)生較大影響D.一旦圖像識(shí)別模型訓(xùn)練完成,就無(wú)需再進(jìn)行更新和改進(jìn),可以一直準(zhǔn)確識(shí)別各種新的圖像22、在人工智能的發(fā)展中,模型的評(píng)估指標(biāo)至關(guān)重要。以下關(guān)于人工智能模型評(píng)估指標(biāo)的描述,不準(zhǔn)確的是()A.準(zhǔn)確率、召回率和F1值常用于分類任務(wù)的評(píng)估B.均方誤差(MSE)和平均絕對(duì)誤差(MAE)常用于回歸任務(wù)的評(píng)估C.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的類型,與具體的應(yīng)用場(chǎng)景無(wú)關(guān)D.可以結(jié)合多個(gè)評(píng)估指標(biāo)來(lái)全面評(píng)估模型的性能23、人工智能中的語(yǔ)音識(shí)別技術(shù)能夠?qū)⑷祟惖恼Z(yǔ)音轉(zhuǎn)換為文字。以下關(guān)于語(yǔ)音識(shí)別的敘述,不準(zhǔn)確的是()A.語(yǔ)音識(shí)別系統(tǒng)通常包括聲學(xué)模型、語(yǔ)言模型和解碼器等部分B.語(yǔ)音識(shí)別的準(zhǔn)確率受到語(yǔ)音質(zhì)量、口音和背景噪聲等因素的影響C.語(yǔ)音識(shí)別技術(shù)已經(jīng)非常完美,能夠準(zhǔn)確識(shí)別各種口音和語(yǔ)速的語(yǔ)音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語(yǔ)音識(shí)別的性能和準(zhǔn)確率24、在人工智能的可解釋性方面,一直是一個(gè)研究熱點(diǎn)。假設(shè)開(kāi)發(fā)了一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項(xiàng)是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對(duì)模型的決策影響最大B.對(duì)模型的內(nèi)部結(jié)構(gòu)和參數(shù)進(jìn)行詳細(xì)解釋,讓用戶理解模型的工作原理C.通過(guò)生成示例來(lái)說(shuō)明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認(rèn)為模型的準(zhǔn)確性比可解釋性更重要25、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開(kāi)發(fā)一個(gè)能夠同時(shí)理解視頻中的圖像內(nèi)容和音頻解說(shuō)的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機(jī)制D.混合融合26、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評(píng)估、欺詐檢測(cè)等。假設(shè)一家銀行要利用人工智能進(jìn)行客戶信用評(píng)估。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來(lái)評(píng)估信用風(fēng)險(xiǎn)B.人工智能模型能夠自適應(yīng)地學(xué)習(xí)和更新,以適應(yīng)不斷變化的金融市場(chǎng)環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機(jī)構(gòu)降低成本,提高風(fēng)險(xiǎn)控制的準(zhǔn)確性和效率27、在人工智能的機(jī)器人控制領(lǐng)域,假設(shè)要讓一個(gè)機(jī)器人通過(guò)學(xué)習(xí)來(lái)適應(yīng)不同的環(huán)境和任務(wù),以下關(guān)于機(jī)器人學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以通過(guò)預(yù)先編程來(lái)應(yīng)對(duì)所有可能的情況,無(wú)需學(xué)習(xí)能力B.強(qiáng)化學(xué)習(xí)是機(jī)器人學(xué)習(xí)的唯一有效方法,其他學(xué)習(xí)方法不適用C.機(jī)器人在學(xué)習(xí)過(guò)程中可以通過(guò)與環(huán)境的交互和試錯(cuò)來(lái)不斷改進(jìn)自己的行為D.機(jī)器人的學(xué)習(xí)能力受到硬件限制,無(wú)法達(dá)到與人類相似的學(xué)習(xí)效果28、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場(chǎng)景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過(guò)與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對(duì)于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無(wú)需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過(guò)程中可能會(huì)經(jīng)歷多次失敗,但通過(guò)不斷嘗試最終能夠?qū)W會(huì)行走29、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車(chē)輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率30、在人工智能的智能客服應(yīng)用中,需要快速準(zhǔn)確地回答用戶的問(wèn)題。假設(shè)用戶的問(wèn)題類型多樣,包括咨詢、投訴、技術(shù)問(wèn)題等。為了提高智能客服的回答質(zhì)量和效率,以下哪種技術(shù)或策略是重要的?()A.建立大規(guī)模的問(wèn)題庫(kù)和標(biāo)準(zhǔn)答案B.運(yùn)用自然語(yǔ)言生成技術(shù)生成回答C.引導(dǎo)用戶提出更簡(jiǎn)單的問(wèn)題D.對(duì)復(fù)雜問(wèn)題直接拒絕回答二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用Python中的Keras庫(kù),搭建一個(gè)基于強(qiáng)化學(xué)習(xí)的物流路徑優(yōu)化模型,降低運(yùn)輸成本和時(shí)間。2、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個(gè)基于Transformer架構(gòu)的語(yǔ)音識(shí)別模型,對(duì)不同口音和噪聲環(huán)境下的語(yǔ)音進(jìn)行準(zhǔn)確識(shí)別。3、(本題5分)使用Python中的Scikit-learn庫(kù),實(shí)現(xiàn)IsolationForest算法對(duì)異常數(shù)據(jù)進(jìn)行檢測(cè),分析算法在不同數(shù)據(jù)集上的性能。4、(本題5分)使用Python中的Scikit-learn庫(kù),實(shí)現(xiàn)AffinityPropagation聚類算法對(duì)數(shù)據(jù)進(jìn)行聚類,分析算法在不同類型數(shù)據(jù)上的適用性。5、(本題5分)利用Scikit-learn中的支持向量回歸
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安理工大學(xué)高科學(xué)院《生物醫(yī)學(xué)安全與法規(guī)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廈門(mén)城市職業(yè)學(xué)院《護(hù)理倫理學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年去年語(yǔ)文會(huì)考試題及答案
- 2025年面試題排序分類及答案
- 2025年飛船太空考試試題及答案
- 2025年超聲科三基試題及答案
- 2025年貴州藥廠面試試題及答案
- 2025年集成電路省賽試題及答案
- 2025年安徽蚌埠中考英語(yǔ)試題及答案
- 2025年客運(yùn)培訓(xùn)考試題及答案
- 第12課 遼宋夏金元時(shí)期經(jīng)濟(jì)的繁榮【公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)】-【教學(xué)評(píng)一體化】大單元整體教學(xué)
- 《復(fù)雜系統(tǒng)理論》課件
- 2025福建省電力電網(wǎng)有限公司高校畢業(yè)生(第一批)招聘748人筆試參考題庫(kù)附帶答案詳解
- 初中英語(yǔ)語(yǔ)法時(shí)態(tài)總復(fù)習(xí)課件
- 農(nóng)村荒山地轉(zhuǎn)讓合同6篇
- 《無(wú)人機(jī)操控基礎(chǔ)》課件
- 2025年濟(jì)南工程職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)必考題
- 零碳數(shù)據(jù)算力中心項(xiàng)目可行性研究報(bào)告
- 塔設(shè)備技術(shù)問(wèn)答-化工設(shè)備
- 水池防滲漏施工方案
- 220KV線路監(jiān)理實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論