版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆甘肅省定西市渭源縣高三下學(xué)期一??荚嚁?shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)().A. B. C. D.2.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.3.已知向量,,若,則與夾角的余弦值為()A. B. C. D.4.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.165.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15606.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.7.一個(gè)陶瓷圓盤的半徑為,中間有一個(gè)邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1478.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④9.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.10.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.811.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.12.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)14.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.15.已知各棱長都相等的直三棱柱(側(cè)棱與底面垂直的棱柱稱為直棱柱)所有頂點(diǎn)都在球的表面上.若球的表面積為則該三棱柱的側(cè)面積為___________.16.已知△的三個(gè)內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在以為頂點(diǎn)的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.18.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說明理由;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)在何處時(shí),直線與平面所成角最大?并求最大角的正弦值.19.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.20.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.21.(12分)設(shè)為等差數(shù)列的前項(xiàng)和,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若滿足不等式的正整數(shù)恰有個(gè),求正實(shí)數(shù)的取值范圍.22.(10分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.2、A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過程要注意.3、B【解析】
直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.4、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點(diǎn)睛】本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.5、B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.7、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點(diǎn)睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題8、B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.9、C【解析】
令,則,,將指數(shù)式化成對(duì)數(shù)式得、后,然后取絕對(duì)值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點(diǎn)睛】本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.10、B【解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.11、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項(xiàng),再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果。【詳解】因?yàn)闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c(diǎn)睛】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得,二項(xiàng)式展開式的通項(xiàng)為,令,則,所以得系數(shù)為.14、【解析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點(diǎn)睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】
只要算出直三棱柱的棱長即可,在中,利用即可得到關(guān)于x的方程,解方程即可解決.【詳解】由已知,,解得,如圖所示,設(shè)底面等邊三角形中心為,直三棱柱的棱長為x,則,,故,即,解得,故三棱柱的側(cè)面積為.故答案為:.【點(diǎn)睛】本題考查特殊柱體的外接球問題,考查學(xué)生的空間想象能力,是一道中檔題.16、【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當(dāng)且僅當(dāng)時(shí),取等號(hào)又,所以令,則當(dāng),即時(shí),當(dāng),即時(shí),則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點(diǎn)睛】本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點(diǎn)在于根據(jù)余弦定理以及不等式求出,考驗(yàn)分析能力以及邏輯思維能力,屬難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量為,平面的法向量為,計(jì)算夾角得到答案.【詳解】(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié)因?yàn)闉榱庑?,所?因?yàn)?,所?因?yàn)槎娼菫橹倍娼牵云矫嫫矫?,且平面平面,所以平面所以因?yàn)樗允瞧叫兴倪呅?,所?所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標(biāo)系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1)為中點(diǎn),理由見解析;(2)當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點(diǎn),可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點(diǎn),證明如下:分別為中點(diǎn),又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時(shí),等號(hào)成立即當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【點(diǎn)睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運(yùn)算求解能力.19、(1)見解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點(diǎn),連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點(diǎn),可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點(diǎn),連接,過作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個(gè)法向量,∵,則直線與平面所成角的正弦值為.點(diǎn)睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條直線也垂直于這個(gè)平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個(gè)平面過另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直.20、(1);(2).【解析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)椋?,所以,,所以函?shù)的最小正周期為.(2)因?yàn)椋?,所以,故函?shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡和計(jì)算能力.21、(1);(2).【解析】
(1)設(shè)等差數(shù)列的公差為,根據(jù)題意得出關(guān)于和的方程組,解出這兩個(gè)量的值,然后利用等差數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度飯店客房預(yù)訂合同2篇
- 2024屆陜西省興平市西郊中學(xué)高考全國統(tǒng)考預(yù)測密卷化學(xué)試卷含解析
- 2024高中地理第五章區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展第二節(jié)產(chǎn)業(yè)轉(zhuǎn)移-以東亞為例練習(xí)含解析新人教版必修3
- 2024高中生物第3章植物的激素調(diào)節(jié)第2節(jié)生長素的生理作用課堂演練含解析新人教版必修3
- 2024高考地理一輪復(fù)習(xí)第十九章第1講世界熱點(diǎn)區(qū)域教案含解析新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第4章非金屬及其化合物第13講硫及其化合物精練含解析
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題二代中國反侵略求民主的潮流第3講近代前期列強(qiáng)入侵和中國軍民維護(hù)國家主權(quán)的斗爭教學(xué)案+練習(xí)人民版
- 2024高考地理一輪復(fù)習(xí)特色篇五常見等值線圖練習(xí)含解析
- 4篇2024大學(xué)班主任個(gè)人工作總結(jié)
- 課件制作試題
- 分居聲明告知書范本
- 新概念英語第一冊(cè)25-50課測試卷
- DL T774-2015規(guī)程試題庫(含答案)
- 采購合同采購合同采購合同
- 云南省律師服務(wù)收費(fèi)管理辦法及標(biāo)準(zhǔn)
- 華為C語言通用編程規(guī)范
- 搞笑詩朗誦《生活》4人
- 團(tuán)建活動(dòng)滿意度調(diào)查問卷
- 數(shù)獨(dú)題目難度系數(shù)3級(jí)共100題后附參考答案
- 齊魯醫(yī)學(xué)數(shù)字疼痛評(píng)分表
- GB∕T 7588.1-2020 電梯制造與安裝安全規(guī)范 第1部分:乘客電梯和載貨電梯
評(píng)論
0/150
提交評(píng)論