版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天津市濱海新區(qū)2025屆高三適應性調(diào)研考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.2.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或3.已知的值域為,當正數(shù)a,b滿足時,則的最小值為()A. B.5 C. D.94.設a,b,c為正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件5.設,隨機變量的分布列是01則當在內(nèi)增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大6.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.7.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.8.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績?nèi)鐖D所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人9.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.10.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內(nèi)切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.11.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)12.設是等差數(shù)列的前n項和,且,則()A. B. C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式滿足,則_________,__________.14.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應該為__________.15.已知復數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.16.已知雙曲線的左焦點為,、為雙曲線上關于原點對稱的兩點,的中點為,的中點為,的中點為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關,合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關,質(zhì)量把關程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關,再由另外2位行家進行第二次質(zhì)量把關,若第二次質(zhì)量把關這2位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關這2位行家中有1位或2位認為質(zhì)量不過關,則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關,則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關中一件手工藝品被1位行家認為質(zhì)量不過關的概率為,且各手工藝品質(zhì)量是否過關相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)已知橢圓的右頂點為,點在軸上,線段與橢圓的交點在第一象限,過點的直線與橢圓相切,且直線交軸于.設過點且平行于直線的直線交軸于點.(Ⅰ)當為線段的中點時,求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.20.(12分)已知函數(shù),為的導數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.21.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.22.(10分)已知函數(shù).(1)若,解關于的不等式;(2)若當時,恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.2、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.3、A【解析】
利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域為,∴,∴,∴,當且僅當時取等號,∴的最小值為.故選:A.【點睛】本題主要考查了對數(shù)復合函數(shù)的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.4、B【解析】
根據(jù)不等式的性質(zhì),結合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數(shù),當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合不等式的性質(zhì)是解決本題的關鍵.5、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.6、C【解析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.7、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.8、D【解析】
根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.9、D【解析】
利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.10、D【解析】
可設的內(nèi)切圓的圓心為,設,,可得,由切線的性質(zhì):切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內(nèi)切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質(zhì),注意運用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運算能力,屬于中檔題.11、C【解析】
根據(jù)并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.12、C【解析】
利用等差數(shù)列的性質(zhì)化簡已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數(shù)為∴∴∴令,得故答案為5,7214、【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規(guī)律.15、【解析】
利用復數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復數(shù)為純虛數(shù),解得.故答案為:.【點睛】本題主要考查了根據(jù)復數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎題.16、【解析】
設,,根據(jù)中點坐標公式可得坐標,利用可得到點坐標所滿足的方程,結合直線斜率可求得,進而求得;將點坐標代入雙曲線方程,結合焦點坐標可求得,進而得到離心率.【詳解】左焦點為,雙曲線的半焦距.設,,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結合可解得:,,離心率.故答案為:;.【點睛】本題考查直線與雙曲線的綜合應用問題,涉及到直線截雙曲線所得線段長度的求解、雙曲線離心率的求解問題;關鍵是能夠通過設點的方式,結合直線斜率、垂直關系、點在雙曲線上來構造方程組求得所需變量的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標方程;(2)設直線的參數(shù)方程為(為參數(shù)),代入,利用韋達定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結果.試題解析:(1)曲線的普通方程為,曲線的直角坐標方程為;(2)設直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個交點,因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即18、(1)(2)①2②期望值為X900600300100P【解析】
(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.19、(Ⅰ)直線的方程為(Ⅱ)【解析】
(1)設點,利用中點坐標公式表示點B,并代入橢圓方程解得,從而求出直線的方程;(2)設直線的方程為:,表示點,然后聯(lián)立方程,利用相切得出,然后求出切點,再設出設直線的方程,求出點,利用兩點坐標,求出直線的方程,從而求出,最后利用以上已求點的坐標表示面積,根據(jù)基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設點,當為的中點時,可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設直線的方程為:令,得:,所以:.聯(lián)立:,消,整理得:.因為直線與橢圓相切,所以.即.設,則,,所以.又直線直線,所以設直線的方程為:.令,得,所以:.因為,所以直線的方程為:.令,得,所以:.所以.又因為..所以(當且僅當,即時等號成立)所以.【點睛】本小題主要考查直線和橢圓的位置關系,考查直線方程以及求橢圓中的最值問題,最值問題一般是把目標式求出,結合目標式特點選用合適的方法求解,側重考查數(shù)學運算的核心素養(yǎng),本題利用了基本不等式求最小值的方法,運算量較大,屬于難題.20、(1)見解析;(2).【解析】
(1)對求導,令,求導研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉(zhuǎn)化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因為,,所以,存在使得,即.所以,當時,為減函數(shù),當時,為增函數(shù),故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數(shù),所以,,由(1)中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《薄層層析柱層析》課件
- 2025年臨汾貨物運輸駕駛員從業(yè)資格考試系統(tǒng)
- 2025年漢中道路貨運駕駛員從業(yè)資格證考試
- 《行政許可范圍制度》課件
- 住宅小區(qū)施工備案委托協(xié)議
- 排水系統(tǒng)工程合同協(xié)議書范本
- 長期購銷合同變更問題
- 花卉園藝設備租賃合同
- 舞臺表演音響租賃合同范本
- 農(nóng)藥使用安全操作手冊
- 備件的ABC分類管理規(guī)定法
- 新教材選擇性必修第二冊人教英語課文語法填空
- 卡簧規(guī)格尺寸WORD版
- 統(tǒng)計學專業(yè)經(jīng)典案例分析
- 電梯及電梯配件項目可行性研究報告寫作范文
- 電鍍生產(chǎn)停電應急程序
- 部編版(統(tǒng)編)小學語文三年級上冊期末試卷(含答題卡)
- 崗位標準之鐵路工務線路工崗位作業(yè)標準
- 一人一檔檔案模板
- 給稅務局的情況說明
- 臨時豎井旋噴樁首件施工總結
評論
0/150
提交評論