版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省東莞中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿(mǎn)足,則在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面向量滿(mǎn)足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.3.設(shè)復(fù)數(shù)滿(mǎn)足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.4.過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),若,則直線(xiàn)的斜率為()A. B.C.或 D.或5.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.6.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.8.設(shè),,是非零向量.若,則()A. B. C. D.9.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.10.已知集合A,則集合()A. B. C. D.11.已知曲線(xiàn),動(dòng)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作曲線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為,則直線(xiàn)截圓所得弦長(zhǎng)為()A. B.2 C.4 D.12.甲乙丙丁四人中,甲說(shuō):我年紀(jì)最大,乙說(shuō):我年紀(jì)最大,丙說(shuō):乙年紀(jì)最大,丁說(shuō):我不是年紀(jì)最大的,若這四人中只有一個(gè)人說(shuō)的是真話(huà),則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,,四件參賽作品,只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說(shuō):“或作品獲得一等獎(jiǎng)”;乙說(shuō):“作品獲得一等獎(jiǎng)”;丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說(shuō):“作品獲得一等獎(jiǎng)”.若這四位同學(xué)中有且只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是______.14.已知向量,且,則___________.15.已知,,,,則______.16.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線(xiàn)方程;(2)討論函數(shù)的單調(diào)性;(3)當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)數(shù)根,求證:.18.(12分)等差數(shù)列中,.(1)求的通項(xiàng)公式;(2)設(shè),記為數(shù)列前項(xiàng)的和,若,求.19.(12分)如圖,已知在三棱錐中,平面,分別為的中點(diǎn),且.(1)求證:;(2)設(shè)平面與交于點(diǎn),求證:為的中點(diǎn).20.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.21.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.22.(10分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線(xiàn).求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
化簡(jiǎn)得到,得到答案.【詳解】,故,對(duì)應(yīng)點(diǎn)在第三象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn)和對(duì)應(yīng)象限,意在考查學(xué)生的計(jì)算能力.2、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.3、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)椋?,?jīng)驗(yàn)證不滿(mǎn)足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.4、A【解析】
利用切割線(xiàn)定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線(xiàn)的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線(xiàn)為圓的上半部分,圓心為,半徑為.設(shè)與曲線(xiàn)相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線(xiàn)的傾斜角為,斜率為.故選:A【點(diǎn)睛】本小題主要考查直線(xiàn)和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5、A【解析】
由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.6、B【解析】
先解不等式化簡(jiǎn)兩個(gè)條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對(duì)值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.7、D【解析】
利用是偶函數(shù)化簡(jiǎn),結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.8、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類(lèi)既能考查向量的線(xiàn)性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類(lèi)問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線(xiàn)性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.9、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)椋?,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.10、A【解析】
化簡(jiǎn)集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.11、C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線(xiàn)斜率,進(jìn)而得到切線(xiàn)方程,將點(diǎn)坐標(biāo)代入切線(xiàn)方程,抽象出直線(xiàn)方程,且過(guò)定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過(guò)點(diǎn),所以,即都在直線(xiàn)上,所以直線(xiàn)的方程為,恒過(guò)定點(diǎn),即直線(xiàn)過(guò)圓心,則直線(xiàn)截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線(xiàn)與圓位置關(guān)系、直線(xiàn)與拋物線(xiàn)位置關(guān)系,拋物線(xiàn)兩切點(diǎn)所在直線(xiàn)求解是解題的關(guān)鍵,屬于中檔題.12、C【解析】
分別假設(shè)甲乙丙丁說(shuō)的是真話(huà),結(jié)合其他人的說(shuō)法,看是否只有一個(gè)說(shuō)的是真話(huà),即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說(shuō)的是真話(huà),則年紀(jì)最大的是甲,那么乙說(shuō)謊,丙也說(shuō)謊,而丁說(shuō)的是真話(huà),而已知只有一個(gè)人說(shuō)的是真話(huà),故甲說(shuō)的不是真話(huà),年紀(jì)最大的不是甲;②假設(shè)乙說(shuō)的是真話(huà),則年紀(jì)最大的是乙,那么甲說(shuō)謊,丙說(shuō)真話(huà),丁也說(shuō)真話(huà),而已知只有一個(gè)人說(shuō)的是真話(huà),故乙說(shuō)謊,年紀(jì)最大的也不是乙;③假設(shè)丙說(shuō)的是真話(huà),則年紀(jì)最大的是乙,所以乙說(shuō)真話(huà),甲說(shuō)謊,丁說(shuō)的是真話(huà),而已知只有一個(gè)人說(shuō)的是真話(huà),故丙在說(shuō)謊,年紀(jì)最大的也不是乙;④假設(shè)丁說(shuō)的是真話(huà),則年紀(jì)最大的不是丁,而已知只有一個(gè)人說(shuō)的是真話(huà),那么甲也說(shuō)謊,說(shuō)明甲也不是年紀(jì)最大的,同時(shí)乙也說(shuō)謊,說(shuō)明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說(shuō)明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、B【解析】
首先根據(jù)“學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng)”,故假設(shè)分別為一等獎(jiǎng),然后判斷甲、乙、丙、丁四位同學(xué)的說(shuō)法的正確性,即可得出結(jié)果.【詳解】若A為一等獎(jiǎng),則甲、丙、丁的說(shuō)法均錯(cuò)誤,不滿(mǎn)足題意;若B為一等獎(jiǎng),則乙、丙的說(shuō)法正確,甲、丁的說(shuō)法錯(cuò)誤,滿(mǎn)足題意;若C為一等獎(jiǎng),則甲、丙、丁的說(shuō)法均正確,不滿(mǎn)足題意;若D為一等獎(jiǎng),則乙、丙、丁的說(shuō)法均錯(cuò)誤,不滿(mǎn)足題意;綜上所述,故B獲得一等獎(jiǎng).【點(diǎn)睛】本題屬于信息題,可根據(jù)題目所給信息來(lái)找出解題所需要的條件并得出答案,在做本題的時(shí)候,可以采用依次假設(shè)為一等獎(jiǎng)并通過(guò)是否滿(mǎn)足題目條件來(lái)判斷其是否正確.14、【解析】
由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因?yàn)椋?,解?故答案為:【點(diǎn)睛】本題主要考查了由向量共線(xiàn)或平行求參數(shù),屬于基礎(chǔ)題.15、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.16、【解析】
化簡(jiǎn)得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)當(dāng)時(shí),在上是減函數(shù);當(dāng)時(shí),在上是增函數(shù);(3)證明見(jiàn)解析.【解析】
(1)當(dāng)時(shí),,求得其導(dǎo)函數(shù),,可求得函數(shù)的圖象在處的切線(xiàn)方程;(2)由已知得,得出導(dǎo)函數(shù),并得出導(dǎo)函數(shù)取得正負(fù)的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當(dāng)時(shí),,,由(2)得的單調(diào)區(qū)間,以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),分析其導(dǎo)函數(shù)的正負(fù)得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當(dāng)時(shí),,所以,,所以函數(shù)的圖象在處的切線(xiàn)方程為,即;(2)由已知得,,令,得,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在上是減函數(shù),在上是增函數(shù);(3)當(dāng)時(shí),,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時(shí),,當(dāng)時(shí),,,所以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),則,當(dāng)時(shí),所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點(diǎn)睛】本題考查運(yùn)用導(dǎo)函數(shù)求函數(shù)在某點(diǎn)的切線(xiàn)方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當(dāng)?shù)暮瘮?shù),得出其導(dǎo)函數(shù)的正負(fù),得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.18、(1)(2)【解析】
(1)由基本量法求出公差后可得通項(xiàng)公式;(2)由等差數(shù)列前項(xiàng)和公式求得,可求得.【詳解】解:(1)設(shè)的公差為,由題設(shè)得因?yàn)?,所以解得,故.?)由(1)得.所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,所以,由得,解得.【點(diǎn)睛】本題考查求等差數(shù)列的通項(xiàng)公式和等比數(shù)列的前項(xiàng)和公式,解題方法是基本量法.19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線(xiàn)面平行的性質(zhì)定理即可得到∥,從而獲得證明【詳解】證明:(1)因?yàn)槠矫?,平面,所?因?yàn)?,所?又因?yàn)椋矫?,平面,所以平?又因?yàn)槠矫妫?(2)因?yàn)槠矫媾c交于點(diǎn),所以平面.因?yàn)榉謩e為的中點(diǎn),所以∥.又因?yàn)槠矫?,平面,所以∥平?又因?yàn)槠矫?,平面平面,所以∥,又因?yàn)槭堑闹悬c(diǎn),所以為的中點(diǎn).【點(diǎn)睛】本題考查線(xiàn)面垂直的判定定理以及線(xiàn)面平行的性質(zhì)定理,考查學(xué)生的邏輯推理能力,是一道容易題.20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)先根據(jù)絕對(duì)值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開(kāi)平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開(kāi)平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對(duì)值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.21、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)對(duì)函數(shù)求導(dǎo),對(duì)參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡(jiǎn)換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)既無(wú)極大值,也無(wú)極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無(wú)極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無(wú)極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點(diǎn)睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問(wèn)題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.22、(1)見(jiàn)解析(2)見(jiàn)證明【解析】
(1)對(duì)函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域?yàn)椋?,令,得?①
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 咸寧職業(yè)技術(shù)學(xué)院《自然地理學(xué)一》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢職業(yè)技術(shù)學(xué)院《土地統(tǒng)計(jì)與R語(yǔ)言》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢工貿(mào)職業(yè)學(xué)院《中級(jí)日語(yǔ)聽(tīng)說(shuō)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新疆建設(shè)職業(yè)技術(shù)學(xué)院《環(huán)境微生物實(shí)驗(yàn)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年跨境電商物流服務(wù)合同協(xié)議書(shū)
- 二零二五年度廠(chǎng)房安全檢查與整改合同模板3篇
- 2024我國(guó)電子商務(wù)平臺(tái)服務(wù)商合作協(xié)議依法簽訂3篇
- 2024物品寄售及電商合作運(yùn)營(yíng)合同范本3篇
- 二零二五版果園廢棄物資源化利用與環(huán)保合作協(xié)議3篇
- 2024年高級(jí)人工智能語(yǔ)音識(shí)別技術(shù)轉(zhuǎn)讓合同
- 高速公路初步設(shè)計(jì)匯報(bào)課件
- 航空油料計(jì)量統(tǒng)計(jì)員(初級(jí))理論考試復(fù)習(xí)題庫(kù)大全-上(單選題匯總)
- 申根簽證申請(qǐng)表模板
- 企業(yè)會(huì)計(jì)準(zhǔn)則、應(yīng)用指南及附錄2023年8月
- 2022年浙江省事業(yè)編制招聘考試《計(jì)算機(jī)專(zhuān)業(yè)基礎(chǔ)知識(shí)》真題試卷【1000題】
- 認(rèn)養(yǎng)一頭牛IPO上市招股書(shū)
- GB/T 3767-2016聲學(xué)聲壓法測(cè)定噪聲源聲功率級(jí)和聲能量級(jí)反射面上方近似自由場(chǎng)的工程法
- GB/T 23574-2009金屬切削機(jī)床油霧濃度的測(cè)量方法
- 動(dòng)物生理學(xué)-全套課件(上)
- 河北省衡水市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- DB32-T 2665-2014機(jī)動(dòng)車(chē)維修費(fèi)用結(jié)算規(guī)范-(高清現(xiàn)行)
評(píng)論
0/150
提交評(píng)論