




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆廣東執(zhí)信中學(xué)高考數(shù)學(xué)押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.2.函數(shù)的圖象大致為()A. B.C. D.3.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.4.已知函數(shù)滿足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或5.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.6.二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3607.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件8.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.29.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.610.已知當(dāng),,時(shí),,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定11.復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,兩個(gè)同心圓的半徑分別為和,為大圓的一條直徑,過點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括兩點(diǎn)),則的最大值是__________.14.已知,圓,直線PM,PN分別與圓O相切,切點(diǎn)為M,N,若,則的最小值為________.15.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.16.設(shè)為橢圓在第一象限上的點(diǎn),則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.18.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若滿足,,,求.20.(12分)在中,角,,的對(duì)邊分別為,,,,,且的面積為.(1)求;(2)求的周長.21.(12分)在平面直角坐標(biāo)系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.22.(10分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時(shí),若對(duì)一切恒成立,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.2、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢排除,最后剩下的一個(gè)即為正確選項(xiàng).3、D【解析】
以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、C【解析】
簡單判斷可知函數(shù)關(guān)于對(duì)稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.5、A【解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).6、A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.7、D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.9、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實(shí)軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.10、C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時(shí),根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點(diǎn)睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.11、A【解析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系12、C【解析】
根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問題,同時(shí)考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.14、【解析】
由可知R為中點(diǎn),設(shè),由過切點(diǎn)的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點(diǎn),由則點(diǎn)在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點(diǎn),所以,,設(shè),則切線PM的方程為,即,同理可得,因?yàn)镻M,PN都過,所以,,所以在直線上,從而直線MN方程為,因?yàn)?,所以,即直線MN方程為,所以直線MN過定點(diǎn),所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點(diǎn)和圓上動(dòng)點(diǎn)距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計(jì)算能力,難度較難.15、【解析】
根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時(shí)無交點(diǎn),,得;又,過定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時(shí),所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時(shí),恒成立.綜上所述,存在唯一的整數(shù)使得,此時(shí)故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時(shí)的不等式求的范圍.屬于難題.16、【解析】
利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設(shè)點(diǎn),,其中,,由,,,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時(shí),函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點(diǎn)睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運(yùn)算能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點(diǎn)存在定理和零點(diǎn)定義可得的范圍.(2)令,題意說明時(shí),恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過分類討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當(dāng)時(shí),無零點(diǎn);②當(dāng)時(shí),,所以在上單調(diào)遞增.取,則又,所以,此時(shí)函數(shù)有且只有一個(gè)零點(diǎn);③當(dāng)時(shí),令,解得(舍)或當(dāng)時(shí),,所以在上單調(diào)遞減;當(dāng)時(shí),所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實(shí)數(shù)的取值范圍為.(2)令,根據(jù)題意知,當(dāng)時(shí),恒成立.又討論:①若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當(dāng)時(shí),恒有,故在上是減函數(shù),于是“對(duì)任意成立”的充分條件是“”,即,解得,故綜上,所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查函數(shù)零點(diǎn)問題,考查不等式恒成立問題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過分類討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學(xué)生分析問題解決問題的能力.18、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點(diǎn)睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.19、(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因?yàn)椋剩?根據(jù)余弦定理:,..【點(diǎn)睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.20、(1)(2)【解析】
(1)利用正弦,余弦定理對(duì)式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點(diǎn)睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計(jì)算能力,屬于基礎(chǔ)題.21、(1)(2).【解析】
(1)根據(jù),由向量,的坐標(biāo)直接計(jì)算即得;(2)先求出,再根據(jù)向量平行的坐標(biāo)關(guān)系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,以及向量平行,是常考題型.22、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時(shí),觀察式子可得恒成立;當(dāng)時(shí),利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時(shí),令,由,,根據(jù)零點(diǎn)存在性定理可得,進(jìn)而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價(jià)于恒成立,進(jìn)而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛比達(dá)法則計(jì)算可得結(jié)論.【詳解】(1)當(dāng),,,,令,解得,當(dāng)時(shí),,當(dāng)時(shí),,在上單調(diào)遞減,在上單調(diào)遞增.(2)解法一:當(dāng)時(shí),函數(shù),若時(shí),此時(shí)對(duì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省杭州市蕭山區(qū)高橋教育集團(tuán)2024學(xué)年第二學(xué)期4月份素養(yǎng)調(diào)研九年級(jí)語文試卷答案
- 《靜女》課件統(tǒng)編版高一語文必修上冊
- 福建省福州市2024-2025學(xué)年高二上學(xué)期期末語文試題2
- 財(cái)稅小知識(shí)分享
- 數(shù)學(xué)二年級(jí)上冊分蘋果教學(xué)設(shè)計(jì)及反思
- Starter Unit 2 Section A What do you have?教學(xué)設(shè)計(jì)2024-2025學(xué)年人教版七年級(jí)英語上冊
- 吉林省梅河口市曙光鎮(zhèn)中學(xué)九年級(jí)化學(xué)上冊 第三單元 課題1 分子和原子教學(xué)設(shè)計(jì) (新版)新人教版
- Module 6 Unit 2 She visited the Tianchi Lake. (教學(xué)設(shè)計(jì))-2023-2024學(xué)年外研版(三起)英語五年級(jí)下冊001
- 七年級(jí)數(shù)學(xué)上冊 第4章 圖形的認(rèn)識(shí)4.1 幾何圖形教學(xué)設(shè)計(jì) (新版)湘教版001
- 外研版 (三年級(jí)起點(diǎn))四年級(jí)下冊Unit 2 Sam had lots of chocolates.教案配套
- 2024年新疆區(qū)公務(wù)員錄用考試《行測》真題及答案解析
- DB41T 2280-2022 路橋用泡沫輕質(zhì)土應(yīng)用技術(shù)規(guī)程
- 《電氣控制系統(tǒng)設(shè)計(jì)與裝調(diào)》課件 項(xiàng)目11 M7130平面磨床電氣控制線路的檢修
- 湖北理工學(xué)院《Python編程》2023-2024學(xué)年期末試卷
- 比較文學(xué)課件:流傳學(xué)
- 2024-2030年中國游戲主機(jī)行業(yè)競爭格局及消費(fèi)趨勢預(yù)測報(bào)告
- 六年級(jí)語文閱讀教學(xué)計(jì)劃
- 國開2024年秋《經(jīng)濟(jì)法學(xué)》計(jì)分作業(yè)1-4答案形考任務(wù)
- 河南省信陽市潢川縣2023-2024學(xué)年四下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 中國高血壓防治指南(2024版)
- 2024-2030年中國高壓泵行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報(bào)告
評(píng)論
0/150
提交評(píng)論