




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省孝感市七校教學聯(lián)盟2025屆高考數(shù)學五模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,,則()A. B.C. D.2.若函數(shù)在時取得極值,則()A. B. C. D.3.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.4.已知變量,滿足不等式組,則的最小值為()A. B. C. D.5.集合,,則=()A. B.C. D.6.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.7.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復平面內(nèi)點表示復數(shù),則表示復數(shù)的點是()A.E B.F C.G D.H8.我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸9.上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數(shù)學水平,也印證了我國古代音律與歷法的密切聯(lián)系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年10.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變11.設,隨機變量的分布列是01則當在內(nèi)增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大12.設命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角A,B,C的對邊分別為a,b,c,且,則________.14.已知雙曲線的一條漸近線經(jīng)過點,則該雙曲線的離心率為_______.15.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.16.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設直線的斜率分別為,若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.18.(12分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網(wǎng)上預約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:19.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.21.(12分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關關系,我們以“年份—2014”為橫坐標,“需求量”為縱坐標,請完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.22.(10分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.2、D【解析】
對函數(shù)求導,根據(jù)函數(shù)在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導數(shù)的應用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.3、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結合的方法,屬于基礎題.5、C【解析】
先化簡集合A,B,結合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關鍵化簡集合A,B,難度較?。?、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.7、C【解析】
由于在復平面內(nèi)點的坐標為,所以,然后將代入化簡后可找到其對應的點.【詳解】由,所以,對應點.故選:C【點睛】此題考查的是復數(shù)與復平面內(nèi)點的對就關系,復數(shù)的運算,屬于基礎題.8、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.9、D【解析】
先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識計算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項.【詳解】解:由題意,可設冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計該骨笛的大致年代早于公元前6000年.故選:.【點睛】本題考查利用三角函數(shù)解決實際問題的能力,運用了兩角和與差的正切公式,考查了轉化思想,數(shù)學建模思想,以及數(shù)學運算能力,屬中檔題.10、A【解析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關系,屬于中檔題.11、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.12、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎題.14、【解析】
根據(jù)雙曲線方程,可得漸近線方程,結合題意可表示,再由雙曲線a,b,c關系表示,最后結合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經(jīng)過點,即,則,由此可得.故答案為:.【點睛】本題考查由雙曲線的漸近線構建方程表示系數(shù)關系進而求離心率,屬于基礎題.15、【解析】
解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導數(shù)法):曲線的函數(shù)解析式為,則,設過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉化為利用切線與直線平行來找出切點,轉化為切點到直線的距離,也可以設曲線上的動點坐標,利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
根據(jù)雙曲線上的點的坐標關系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設,交圓于點,所以易知:即.故答案為:【點睛】此題考查根據(jù)雙曲線上的點的坐標關系求解斜率關系,涉及雙曲線中的部分定值結論,若能熟記常見二級結論,此題可以簡化計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.18、(1),232;(2)【解析】
(1)根據(jù)公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預測日平均氣溫為時該出租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【點睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.19、(1);(2).【解析】
(1)根據(jù)等比中項性質可構造方程求得,由等差數(shù)列通項公式可求得結果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結合等差和等比數(shù)列求和公式可求得結果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項為,公比為的等比數(shù)列,.【點睛】本題考查等差數(shù)列通項公式的求解、分組求和法求解數(shù)列的前項和的問題;關鍵是能夠根據(jù)通項公式證得數(shù)列為等比數(shù)列,進而采用分組求和法,結合等差和等比數(shù)列求和公式求得結果.20、(1).(2)【解析】
(1)利用線面垂直的性質得出,進而得出,利用相似三角形的性質,得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加強社團宣傳與形象塑造計劃
- 2025年證券從業(yè)資格證提升路徑試題及答案
- 團隊績效激勵的年度發(fā)展計劃
- 年度團隊建設活動的策劃計劃
- 2025注冊會計師考試期間的個人實踐與思考總結試題及答案
- 2025年證券從業(yè)資格證成長回顧試題及答案
- 項目管理資格考試準備試題及答案
- 項目管理考試所需的基礎知識和技能試題及答案
- 2025年特許金融分析師考試實例分析試題及答案
- 注冊會計師行業(yè)職業(yè)道德案例分析試題及答案
- 2025年滁州職業(yè)技術學院單招職業(yè)技能考試題庫及參考答案一套
- 交友主題班會-遠離“背后蛐蛐”課件
- 2025年陜西金融資產(chǎn)管理股份有限公司招聘筆試參考題庫含答案解析
- T-ZAWS 006-2024 企業(yè)安全文化建設等級測評規(guī)范
- 《鋼鐵是怎樣煉成的》超全知識點考點合集
- 《餐飲服務常用英文表達》課件
- 城區(qū)供水設施智能化改造項目概述
- 項目式學習在小學數(shù)學教學中的應用
- 彩票行業(yè)風險管理-深度研究
- 煙草證委托經(jīng)營管理協(xié)議書
- 2025豬場轉讓合同范本
評論
0/150
提交評論