北京理工大學(xué)《機(jī)器學(xué)習(xí)與人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
北京理工大學(xué)《機(jī)器學(xué)習(xí)與人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
北京理工大學(xué)《機(jī)器學(xué)習(xí)與人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
北京理工大學(xué)《機(jī)器學(xué)習(xí)與人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
北京理工大學(xué)《機(jī)器學(xué)習(xí)與人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)北京理工大學(xué)《機(jī)器學(xué)習(xí)與人工智能》

2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于醫(yī)療圖像診斷的機(jī)器學(xué)習(xí)模型,需要提高模型對(duì)小病變的檢測(cè)能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強(qiáng)的強(qiáng)度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機(jī)制D.以上方法都可以2、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)3、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒(méi)有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)4、在一個(gè)強(qiáng)化學(xué)習(xí)問(wèn)題中,智能體需要在環(huán)境中通過(guò)不斷嘗試和學(xué)習(xí)來(lái)優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動(dòng)作空間,以下哪種算法通常被用于解決這類問(wèn)題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法5、在集成學(xué)習(xí)中,Adaboost算法通過(guò)調(diào)整樣本的權(quán)重來(lái)訓(xùn)練多個(gè)弱分類器。如果一個(gè)樣本在之前的分類器中被錯(cuò)誤分類,它的權(quán)重會(huì)()A.保持不變B.減小C.增大D.隨機(jī)變化6、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法7、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于疾病預(yù)測(cè)的機(jī)器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評(píng)估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗(yàn)證B.留一法C.自助法D.以上方法都可以8、在使用深度學(xué)習(xí)進(jìn)行圖像分類時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來(lái)增加數(shù)據(jù)的多樣性B.對(duì)圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過(guò)擬合,但會(huì)增加數(shù)據(jù)標(biāo)注的工作量D.過(guò)度的數(shù)據(jù)增強(qiáng)可能會(huì)導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無(wú)關(guān)的特征,影響模型性能9、在一個(gè)工業(yè)生產(chǎn)的質(zhì)量控制場(chǎng)景中,需要通過(guò)機(jī)器學(xué)習(xí)來(lái)實(shí)時(shí)監(jiān)測(cè)產(chǎn)品的質(zhì)量參數(shù),及時(shí)發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動(dòng)態(tài)變化和噪聲等特點(diǎn)。以下哪種監(jiān)測(cè)和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對(duì)異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測(cè)異常數(shù)據(jù)點(diǎn),但對(duì)于高維數(shù)據(jù)效果可能不穩(wěn)定C.運(yùn)用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類和可視化,但實(shí)時(shí)性可能不足D.利用基于深度學(xué)習(xí)的自動(dòng)編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對(duì)異常數(shù)據(jù)有較好的檢測(cè)能力,但訓(xùn)練和計(jì)算成本較高10、在進(jìn)行異常檢測(cè)時(shí),以下關(guān)于異常檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通過(guò)計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來(lái)判斷異常值B.基于距離的方法通過(guò)計(jì)算樣本之間的距離來(lái)識(shí)別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測(cè)方法都能準(zhǔn)確地檢測(cè)出所有的異常,不存在漏檢和誤檢的情況11、特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié)。以下關(guān)于特征工程的說(shuō)法中,錯(cuò)誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說(shuō)法錯(cuò)誤的是()A.特征提取是從原始數(shù)據(jù)中自動(dòng)學(xué)習(xí)特征表示的過(guò)程B.特征選擇是從眾多特征中選擇出對(duì)模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進(jìn)行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機(jī)器學(xué)習(xí)算法中需要,深度學(xué)習(xí)算法不需要進(jìn)行特征工程12、在自然語(yǔ)言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是13、在一個(gè)分類問(wèn)題中,如果數(shù)據(jù)集中存在噪聲和錯(cuò)誤標(biāo)簽,以下哪種模型可能對(duì)這類噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹14、在一個(gè)強(qiáng)化學(xué)習(xí)場(chǎng)景中,智能體需要在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí)最優(yōu)策略。如果環(huán)境的獎(jiǎng)勵(lì)信號(hào)稀疏,以下哪種技術(shù)可以幫助智能體更好地學(xué)習(xí)?()A.獎(jiǎng)勵(lì)塑造B.策略梯度估計(jì)的改進(jìn)C.經(jīng)驗(yàn)回放D.以上技術(shù)都可以15、對(duì)于一個(gè)高維度的數(shù)據(jù),在進(jìn)行特征選擇時(shí),以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和工作原理。2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在哲學(xué)研究中的思考方式。3、(本題5分)解釋機(jī)器學(xué)習(xí)在機(jī)器翻譯中的技術(shù)。4、(本題5分)解釋機(jī)器學(xué)習(xí)在語(yǔ)音識(shí)別中的原理和方法。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述機(jī)器學(xué)習(xí)中的模型評(píng)估指標(biāo)。介紹常見(jiàn)的模型評(píng)估指標(biāo),如準(zhǔn)確率、召回率、F1值等。分析不同評(píng)估指標(biāo)的適用場(chǎng)景及如何選擇合適的評(píng)估指標(biāo)。2、(本題5分)分析機(jī)器學(xué)習(xí)中的集成學(xué)習(xí)方法。包括bagging、boosting等,討論其原理及在提高模型準(zhǔn)確性方面的作用。3、(本題5分)論述在強(qiáng)化學(xué)習(xí)中,如何利用模型預(yù)測(cè)控制(ModelPredictiveControl)改進(jìn)策略。分析模型不確定性對(duì)控制效果的影響。4、(本題5分)探討深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)的特點(diǎn)、工作原理及在計(jì)算機(jī)視覺(jué)領(lǐng)域的應(yīng)用,如圖像分類、目標(biāo)檢測(cè)等。5、(本題5分)結(jié)合實(shí)際應(yīng)用,論述機(jī)器學(xué)習(xí)在物流供應(yīng)鏈風(fēng)險(xiǎn)管理中的作用。分析風(fēng)險(xiǎn)識(shí)別、風(fēng)險(xiǎn)評(píng)估、風(fēng)險(xiǎn)應(yīng)對(duì)等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。四、應(yīng)用題(本大題共4

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論