




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁北京理工大學(xué)
《機器學(xué)習(xí)及醫(yī)學(xué)圖像分析》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進行模型評估時,除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項是不準(zhǔn)確的?()A.混淆矩陣的行表示真實類別,列表示預(yù)測類別B.真陽性(TruePositive,TP)表示實際為正例且被預(yù)測為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實際為正例但被預(yù)測為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題2、某機器學(xué)習(xí)項目需要對視頻數(shù)據(jù)進行分析和理解。以下哪種方法可以將視頻數(shù)據(jù)轉(zhuǎn)換為適合機器學(xué)習(xí)模型處理的形式?()A.提取關(guān)鍵幀B.視頻編碼C.光流計算D.以上方法都可以3、考慮一個圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο?。以下哪種方法常用于圖像分割?()A.閾值分割B.區(qū)域生長C.邊緣檢測D.以上都是4、某研究需要對一個大型數(shù)據(jù)集進行降維,同時希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機鄰域嵌入(t-SNE)D.自編碼器5、在進行模型壓縮時,以下關(guān)于模型壓縮方法的描述,哪一項是不準(zhǔn)確的?()A.剪枝是指刪除模型中不重要的權(quán)重或神經(jīng)元,減少模型的參數(shù)量B.量化是將模型的權(quán)重進行低精度表示,如從32位浮點數(shù)轉(zhuǎn)換為8位整數(shù)C.知識蒸餾是將復(fù)雜模型的知識轉(zhuǎn)移到一個較小的模型中,實現(xiàn)模型壓縮D.模型壓縮會導(dǎo)致模型性能嚴(yán)重下降,因此在實際應(yīng)用中應(yīng)盡量避免使用6、在機器學(xué)習(xí)中,對于一個分類問題,我們需要選擇合適的算法來提高預(yù)測準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時樣本數(shù)量相對較少。在這種情況下,以下哪種算法可能是一個較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機D.樸素貝葉斯7、假設(shè)正在開發(fā)一個用于圖像分割的機器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用8、假設(shè)正在比較不同的聚類算法,用于對一組沒有標(biāo)簽的客戶數(shù)據(jù)進行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法9、假設(shè)正在研究一個文本生成任務(wù),例如生成新聞文章。以下哪種深度學(xué)習(xí)模型架構(gòu)在自然語言生成中表現(xiàn)出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長短時記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型都常用于文本生成10、在一個分類問題中,如果需要對新出現(xiàn)的類別進行快速適應(yīng)和學(xué)習(xí),以下哪種模型具有較好的靈活性?()A.在線學(xué)習(xí)模型B.增量學(xué)習(xí)模型C.遷移學(xué)習(xí)模型D.以上模型都可以11、在進行自動特征工程時,以下關(guān)于自動特征工程方法的描述,哪一項是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率12、在進行機器學(xué)習(xí)模型評估時,除了準(zhǔn)確性等常見指標(biāo)外,還可以使用混淆矩陣來更詳細地分析模型的性能。對于一個二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個指標(biāo)可以通過混淆矩陣計算得到,并且對于不平衡數(shù)據(jù)集的評估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)13、強化學(xué)習(xí)中的智能體通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強化學(xué)習(xí)的說法中,錯誤的是:強化學(xué)習(xí)的目標(biāo)是最大化累計獎勵。智能體根據(jù)當(dāng)前狀態(tài)選擇動作,環(huán)境根據(jù)動作反饋新的狀態(tài)和獎勵。那么,下列關(guān)于強化學(xué)習(xí)的說法錯誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強化學(xué)習(xí)算法C.強化學(xué)習(xí)算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強化學(xué)習(xí)可以應(yīng)用于機器人控制、游戲等領(lǐng)域14、對于一個高維度的數(shù)據(jù),在進行特征選擇時,以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以15、在評估機器學(xué)習(xí)模型的性能時,通常會使用多種指標(biāo)。假設(shè)我們有一個二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評估指標(biāo)的描述,哪一項是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述在物流領(lǐng)域,路徑規(guī)劃中機器學(xué)習(xí)的應(yīng)用。2、(本題5分)解釋機器學(xué)習(xí)在表觀遺傳學(xué)中的調(diào)控預(yù)測。3、(本題5分)簡述主成分分析(PCA)在數(shù)據(jù)降維中的原理和步驟。4、(本題5分)說明機器學(xué)習(xí)在昆蟲學(xué)中的種群動態(tài)分析。三、論述題(本大題共5個小題,共25分)1、(本題5分)分析機器學(xué)習(xí)在醫(yī)療影像診斷中的應(yīng)用,如X光、CT、MRI等圖像分析,討論其對醫(yī)療診斷準(zhǔn)確性的提高。2、(本題5分)闡述機器學(xué)習(xí)中的隨機森林算法。分析隨機森林的原理和優(yōu)勢,以及在分類和回歸問題中的應(yīng)用場景。3、(本題5分)探討深度學(xué)習(xí)中的注意力機制在自然語言處理中的作用。分析其原理及對模型性能的提升。4、(本題5分)機器學(xué)習(xí)中的模型評估指標(biāo)有哪些?結(jié)合具體任務(wù),分析不同指標(biāo)的適用場景及局限性。5、(本題5分)分析機器學(xué)習(xí)在公共安全領(lǐng)域的應(yīng)用,如犯罪預(yù)測、視頻監(jiān)控分析等,討論其對社會穩(wěn)定的保障作用。四、應(yīng)用題(本大題共4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 影視廣告發(fā)布合同
- 二零二五年度知識產(chǎn)權(quán)保護委托擔(dān)保合同質(zhì)押維護協(xié)議
- 二零二五年度個人藝術(shù)培訓(xùn)課程借款合同
- 二零二五年度貨車運輸企業(yè)內(nèi)部管理及培訓(xùn)合同
- 深圳市2025年度勞動合同解除與補償協(xié)議范本
- 二零二五年度房地產(chǎn)銷售業(yè)績協(xié)議合同規(guī)范
- 二零二五年度基于業(yè)績考核的公司終止職工勞動合同書
- 2025年中醫(yī)器械項目經(jīng)濟效益評估報告
- 二零二五年度網(wǎng)紅打卡地門面房屋租賃協(xié)議范本
- 2025年度綠色環(huán)保家裝硬裝工程合同模板
- 《產(chǎn)業(yè)轉(zhuǎn)型與創(chuàng)新》課件
- “艾梅乙”感染者消除醫(yī)療歧視制度-
- 2025-2030年中國測序儀市場運行態(tài)勢及發(fā)展規(guī)劃分析報告
- 《物理前沿科學(xué)》課件
- 餐廳市場調(diào)研與定位
- 2025電動自行車安全技術(shù)規(guī)范培訓(xùn)課件
- 網(wǎng)絡(luò)直播承諾書范本范本
- DB21-T 3943-2024 消防控制室管理
- 規(guī)劃課題申報范例:高校畢業(yè)生高質(zhì)量就業(yè)服務(wù)體系建設(shè)研究(附可修改技術(shù)路線圖)
- 2025北京語言大學(xué)新編長聘人員招聘21人筆試備考試題及答案解析
- 銀屑病小講課
評論
0/150
提交評論