山東省平度市2025屆高考考前提分數(shù)學仿真卷含解析_第1頁
山東省平度市2025屆高考考前提分數(shù)學仿真卷含解析_第2頁
山東省平度市2025屆高考考前提分數(shù)學仿真卷含解析_第3頁
山東省平度市2025屆高考考前提分數(shù)學仿真卷含解析_第4頁
山東省平度市2025屆高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省平度市2025屆高考考前提分數(shù)學仿真卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.42.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.33.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.4.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數(shù)為()A.1 B.2 C.3 D.05.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1806.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.7.若集合,則()A. B.C. D.8.若實數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.29.集合,,則()A. B. C. D.10.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.11.設,是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤12.設,則,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),其圖象關于直線對稱,當時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.14.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.15.已知平面向量與的夾角為,,,則________.16.二項式的展開式的各項系數(shù)之和為_____,含項的系數(shù)為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)求證:(,且).18.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.19.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.20.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)設,函數(shù).(1)當時,求在內(nèi)的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.22.(10分)某公司打算引進一臺設備使用一年,現(xiàn)有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設備5103050乙設備05151515(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學期望為決策依據(jù),希望設備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設備?請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.2、C【解析】

連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關鍵.屬于基礎題.3、B【解析】

,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當時,的展開式中的系數(shù)為.當,時,系數(shù)為;當,時,系數(shù)為;當,時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.4、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數(shù)為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.5、A【解析】

因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.6、B【解析】

分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.7、A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.8、C【解析】

作出可行域,直線目標函數(shù)對應的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,解題關鍵是作出可行域,本題要注意可行域不是一個封閉圖形.9、A【解析】

解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.10、A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.11、A【解析】

利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應當為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導,考查數(shù)列性質(zhì)的應用,考查學生的綜合分析以及計算能力.12、A【解析】

根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先推導出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關鍵就是結合函數(shù)的奇偶性與對稱軸推導出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.14、,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.15、【解析】

根據(jù)已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數(shù)量積運算,考查計算求解能力,屬于基礎題.16、【解析】

將代入二項式可得展開式各項系數(shù)之和,寫出二項展開式通項,令的指數(shù)為,求出參數(shù)的值,代入通項即可得出項的系數(shù).【詳解】將代入二項式可得展開式各項系數(shù)和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數(shù)為.故答案為:;.【點睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【解析】

(1)分別求得與的導函數(shù),由導函數(shù)與單調(diào)性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數(shù)與函數(shù)單調(diào)性關系,放縮法在證明不等式中的應用,屬于難題.18、(1)(答案不唯一)(2)證明見解析【解析】

(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因為,所以.所以,即.因為,所以,因為,所以,所以.【點睛】考查不等式的證明,考查不等式的性質(zhì)的應用.19、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質(zhì)的綜合應用;2.等比數(shù)列性質(zhì)的綜合應用;1.數(shù)列求和.20、(1)證明見解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應的線面垂直關系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點,并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎題21、(1)極大值是,無極小值;(2)【解析】

(1)當時,可求得,令,利用導數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉化為求函數(shù)的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數(shù).因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.22、(1)分布列見解析,分布列見解析;(2)甲設備,理由見解析【解析】

(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,1200

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論