版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市海淀區(qū)十一學校2025屆高三下學期第五次調(diào)研考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形2.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.3.已知數(shù)列的前項和為,且,,則()A. B. C. D.4.已知是虛數(shù)單位,若,則()A. B.2 C. D.35.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.6.函數(shù)的圖象可能為()A. B.C. D.7.在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為()A. B. C. D.8.若集合,,則下列結(jié)論正確的是()A. B. C. D.9.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.7810.在三角形中,,,求()A. B. C. D.11.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.12.若復數(shù)在復平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的值域為_____.14.在中,,,,則__________.15.拋物線的焦點坐標為______.16.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.18.(12分)已知,(其中).(1)求;(2)求證:當時,.19.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)己知,函數(shù).(1)若,解不等式;(2)若函數(shù),且存在使得成立,求實數(shù)的取值范圍.21.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.22.(10分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.2、C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).3、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎(chǔ)題.4、A【解析】
直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎(chǔ)題.5、A【解析】
可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A【點睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關(guān)鍵,屬于中檔題6、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、D【解析】
利用直線與圓相交求出實數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎(chǔ)題.8、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學生概念理解,數(shù)學運算能力,屬于基礎(chǔ)題.9、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉(zhuǎn)化計算,再根據(jù)等差數(shù)列求和公式計算出結(jié)果.【詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.10、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計算能力,屬于中等題.11、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.12、B【解析】
復數(shù),在復平面內(nèi)對應(yīng)的點在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應(yīng)的點在第二象限,得,則.故選:B.【點睛】本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。14、1【解析】
由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【點睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.16、【解析】
由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關(guān)鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.18、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設(shè)當時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當時,成立.綜上原不等式獲證.19、(1);(2)【解析】
(1),對函數(shù)求導,分別求出和,即可求出在點處的切線方程;(2)對求導,分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當時,令,解得,即在上單調(diào)遞減,則,故不符合題意;③當時,在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1);(2)【解析】
(1)零點分段解不等式即可(2)等價于,由,得不等式即可求解【詳解】(1)當時,,當時,由,解得;當時,由,解得;當時,由,解得.綜上可知,原不等式的解集為.(2).存在使得成立,等價于.又因為,所以,即.解得,結(jié)合,所以實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法,考查不等式恒成立及最值,考查轉(zhuǎn)化思想,是中檔題21、(1)(2)1008【解析】
(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機床自動化與智能化控制技術(shù)的融合應(yīng)用
- 現(xiàn)代審美下工藝美術(shù)品的商業(yè)價值挖掘
- 8科技發(fā)展 造福人類 說課稿-2023-2024學年道德與法治六年級下冊統(tǒng)編版
- 宿州2025年安徽宿州泗縣婦幼保健生育服務(wù)中心考調(diào)衛(wèi)生專業(yè)技術(shù)人員5人筆試歷年參考題庫附帶答案詳解
- 現(xiàn)代企業(yè)生產(chǎn)成本控制與質(zhì)量管理體系建設(shè)培訓概覽
- 天津2025年天津中德應(yīng)用技術(shù)大學輔導員崗位招聘7人筆試歷年參考題庫附帶答案詳解
- 2024-2025學年高中生物 第三章 基因的本質(zhì) 第3節(jié) DNA的復制說課稿 新人教版必修2
- 二零二五年度四川2025年度無過錯方離婚經(jīng)濟補償協(xié)議
- 2025年度私房承包建筑合同書:生態(tài)環(huán)保型景觀園林承包合同
- 2025年度環(huán)保合同可撤銷條件及綠色可持續(xù)發(fā)展合同
- 稀土配合物和量子點共摻雜構(gòu)筑發(fā)光軟材料及其熒光性能研究
- 衛(wèi)生部手術(shù)分級目錄(2023年1月份修訂)
- JJG 921-2021環(huán)境振動分析儀
- 中藥炮制學-第五、六章
- 中國風軍令狀誓師大會PPT模板
- 小兒高熱驚厥精品課件
- 2023機械工程師考試試題及答案
- 2022年電拖實驗報告伍宏淳
- 豐田汽車戰(zhàn)略規(guī)劃與戰(zhàn)略管理體系研究(2021)
- 即興口語(姜燕)-課件-即興口語第一章PPT-中國傳媒大學
- 冷卻塔是利用水和空氣的接觸
評論
0/150
提交評論