高職高考數(shù)學(xué)復(fù)習(xí)第八章平面解析幾何8-5橢圓(2)課件_第1頁(yè)
高職高考數(shù)學(xué)復(fù)習(xí)第八章平面解析幾何8-5橢圓(2)課件_第2頁(yè)
高職高考數(shù)學(xué)復(fù)習(xí)第八章平面解析幾何8-5橢圓(2)課件_第3頁(yè)
高職高考數(shù)學(xué)復(fù)習(xí)第八章平面解析幾何8-5橢圓(2)課件_第4頁(yè)
高職高考數(shù)學(xué)復(fù)習(xí)第八章平面解析幾何8-5橢圓(2)課件_第5頁(yè)
已閱讀5頁(yè),還剩53頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高職高考數(shù)學(xué)復(fù)習(xí)§8.5橢圓(2)【復(fù)習(xí)目標(biāo)】1.掌握橢圓的幾何性質(zhì).2.能利用待定系數(shù)法和橢圓的幾何性質(zhì)求出橢圓的標(biāo)準(zhǔn)方程.3.理解直線與橢圓的位置關(guān)系,熟知弦長(zhǎng)公式,能根據(jù)有關(guān)橢圓的知識(shí)解決較簡(jiǎn)單的應(yīng)用問(wèn)題.【知識(shí)回顧】1.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì):定義M為橢圓上的點(diǎn),|MF1|+|MF2|=2a(2a>|F1F2|>0)焦點(diǎn)位置x軸y軸圖形

標(biāo)準(zhǔn)方程參數(shù)關(guān)系a2=b2+c2標(biāo)準(zhǔn)方程參數(shù)關(guān)系a2=b2+c2幾何性質(zhì)范圍|x|≤a,|y|≤b|x|≤b,|y|≤a對(duì)稱性對(duì)稱軸為x軸、y軸;對(duì)稱中心為原點(diǎn)焦點(diǎn)F1(-c,0),F2(c,0)F1(0,c),F2(0,-c)頂點(diǎn)A(±a,0),B(0,±b)A(0,±a),B(±b,0)軸長(zhǎng)長(zhǎng)軸長(zhǎng)2a;短軸長(zhǎng)2b準(zhǔn)線離心率【說(shuō)明】橢圓自身固有幾何量所具有的性質(zhì)與坐標(biāo)系選擇無(wú)關(guān),即不隨坐標(biāo)系的改變而改變.

【例題精解】【例1】求橢圓4x2+9y2=36的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、頂點(diǎn)坐標(biāo)、準(zhǔn)線方程和離心率.

【點(diǎn)評(píng)】橢圓自身固有幾何量所具有的性質(zhì)與坐標(biāo)系選擇無(wú)關(guān),即不隨坐標(biāo)系的改變而改變.

【例2】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.(1)長(zhǎng)軸的長(zhǎng)為16,短軸的長(zhǎng)為長(zhǎng)軸的長(zhǎng)的一半,焦點(diǎn)在x軸上;(2)焦距等于12,離心率等于0.6,焦點(diǎn)在y軸上;(3)焦點(diǎn)在x軸,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的三倍,且橢圓經(jīng)過(guò)點(diǎn)P(3,0).

【點(diǎn)評(píng)】先定位,再定量:橢圓的標(biāo)準(zhǔn)方程是由三個(gè)參數(shù)a,b,c及焦點(diǎn)位置唯一確定.因此我們需要求橢圓的標(biāo)準(zhǔn)方程時(shí),先確定焦點(diǎn)位置,再運(yùn)用待定系數(shù)法求a,b的值(其步驟是:先設(shè)方程、再求參數(shù)、最后寫(xiě)出方程).橢圓方程中的參數(shù)關(guān)系a2=b2+c2是橢圓一系列性質(zhì)中應(yīng)用最為廣泛的,在解題時(shí)要引起足夠的重視.

【解】由已知得a2=25,a=5,△MNF1的周長(zhǎng)可看作四條線段|MF1|,|F1N|,|NF2|,|F2M|的和,即周長(zhǎng)L=|MF1|+|F1N|+|NF2|+|F2M|=(|MF1|+|MF2|)+(|NF1|+|NF2|)=4a=20.【點(diǎn)評(píng)】利用橢圓定義解有關(guān)橢圓問(wèn)題是最基本也是最重要的方法,這一點(diǎn)要加以重視.

【解】由已知,得a2=36,a=6.

△ABF1的周長(zhǎng)可看作四條線段|AF1|,|F1B|,|AF2|,|F2B|的和,即周長(zhǎng)L=|AF1|+|F1B|+|AF2|+|F2B|

=(|AF1|+|AF2|)+(|BF1|+|BF2|)

=4a=24.

【解】由已知條件得a2=3,b2=2,則c2=3-2=1,即c=1,∵焦點(diǎn)在x軸上,∴焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0).由直線的點(diǎn)斜式方程得直線l的方程為y-0=1·(x-1),即y=x-1,

【點(diǎn)評(píng)】求直線與圓錐曲線相交截得的弦長(zhǎng)是一類重要的題型,可以建立方程組,求出兩個(gè)交點(diǎn)坐標(biāo),再利用兩點(diǎn)間距離公式即可求解;但解決這類問(wèn)題常用的方法是運(yùn)用弦長(zhǎng)公式,同時(shí)巧用韋達(dá)定理,能達(dá)到簡(jiǎn)化運(yùn)算的目的.

【答案】D

【答案】A

【答案】 B

【答案】C

【答案】D

【答案】B

【答案】D

13.中心在原點(diǎn),焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)為12,短軸長(zhǎng)為8,則橢圓的標(biāo)準(zhǔn)方程是

.

【答案】A

【答案】D

【答案】A

【答案】B

【答案】B

【答案】D

【答案】A

【答案】D10.若方程16x2+ky2=16k表示橢圓,則k的取值范圍是 (

) A.(16,+∞) B.(0,+∞) C.(0,16)∪(16,+∞) D.(0,16)【答案】C二、填空題11.橢圓9x2+y2=1的焦點(diǎn)坐標(biāo)為

,焦距為

,長(zhǎng)軸長(zhǎng)為

,短軸長(zhǎng)為

,四個(gè)頂點(diǎn)坐標(biāo)為

,

,

,

,離心率為

,準(zhǔn)線方程

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論