天津市蘆臺(tái)一中2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁(yè)
天津市蘆臺(tái)一中2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁(yè)
天津市蘆臺(tái)一中2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁(yè)
天津市蘆臺(tái)一中2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁(yè)
天津市蘆臺(tái)一中2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津市蘆臺(tái)一中2025屆高三3月份模擬考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.2.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.3.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:4.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.5.已知函數(shù)滿足:當(dāng)時(shí),,且對(duì)任意,都有,則()A.0 B.1 C.-1 D.6.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.7.已知是過拋物線焦點(diǎn)的弦,是原點(diǎn),則()A.-2 B.-4 C.3 D.-38.已知向量,,若,則與夾角的余弦值為()A. B. C. D.9.如圖,長(zhǎng)方體中,,,點(diǎn)T在棱上,若平面.則()A.1 B. C.2 D.10.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}11.已知菱形的邊長(zhǎng)為2,,則()A.4 B.6 C. D.12.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,則這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為___________.14.若在上單調(diào)遞減,則的取值范圍是_______15.?dāng)?shù)列的前項(xiàng)和為,則數(shù)列的前項(xiàng)和_____.16.已知一個(gè)圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.18.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.19.(12分)小麗在同一城市開的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調(diào)劑1人到該店維持營(yíng)業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(2)設(shè)營(yíng)業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.20.(12分)的內(nèi)角,,的對(duì)邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.22.(10分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

先由是偶函數(shù),得到關(guān)于直線對(duì)稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對(duì)稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.2、B【解析】

利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).3、C【解析】

根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價(jià)于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.4、A【解析】

化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。5、C【解析】

由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.6、D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.7、D【解析】

設(shè),,設(shè):,聯(lián)立方程得到,計(jì)算得到答案.【詳解】設(shè),,故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點(diǎn)睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡(jiǎn)化運(yùn)算,是解題的關(guān)鍵.8、B【解析】

直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.9、D【解析】

根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長(zhǎng)方體中,,點(diǎn)T在棱上,若平面.則,則,所以,則,所以,故選:D.【點(diǎn)睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.10、C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.11、B【解析】

根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長(zhǎng)為2,,∴,∴,∴,且,∴,故選B.【點(diǎn)睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..12、D【解析】

利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對(duì)四個(gè)命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線垂直的直線才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14、【解析】

由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時(shí),顯然,符合題意;當(dāng)時(shí),在恒成立,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.15、【解析】

解:兩式作差,得,經(jīng)過檢驗(yàn)得出數(shù)列的通項(xiàng)公式,進(jìn)而求得的通項(xiàng)公式,裂項(xiàng)相消求和即可.【詳解】解:兩式作差,得化簡(jiǎn)得,檢驗(yàn):當(dāng)n=1時(shí),,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列;,,令故填:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,裂項(xiàng)相消求數(shù)列的前n項(xiàng)和,解題過程中需要注意n的范圍以及對(duì)特殊項(xiàng)的討論,側(cè)重考查運(yùn)算能力.16、【解析】

依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長(zhǎng),再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長(zhǎng)為,高為,所以有解得,故該圓錐的體積為。【點(diǎn)睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對(duì)值不等式的性質(zhì)可得,不等式對(duì)任意實(shí)數(shù)恒成立,等價(jià)于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當(dāng)時(shí),即,①當(dāng)時(shí),得,所以;②當(dāng)時(shí),得,即,所以;③當(dāng)時(shí),得成立,所以.故不等式的解集為.(Ⅱ)因?yàn)椋深}意得,則,解得,故的取值范圍是.18、(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)椋?,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.19、(1)(2)見解析,【解析】

(1)根據(jù)題意設(shè)出事件,列出概率,運(yùn)用公式求解;(2)由題得,X的所有可能取值為,根據(jù)(1)和變量對(duì)應(yīng)的事件,可得變量對(duì)應(yīng)的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發(fā)生調(diào)劑現(xiàn)象的概率為P.則,,.所以.答:發(fā)生調(diào)劑現(xiàn)象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點(diǎn)睛】本題是一道考查概率和期望的??碱}型.20、(1);(2)【解析】

(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡(jiǎn),即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)椋杂扇切蚊娣e公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)椋?(2)因?yàn)?,所以由正弦定理代入化?jiǎn)可得,由(1),代入可得,展開化簡(jiǎn)可得,根據(jù)輔助角公式化簡(jiǎn)可得.因?yàn)?,所以,所以,所以為等腰三角形,且,所?【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.21、(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當(dāng)時(shí)取等號(hào).故,且當(dāng)時(shí)取等號(hào).所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點(diǎn)定位】基本不等式.22、(1);(2)見解析【解析】

(1)利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論