北京市海淀區(qū)十一學(xué)校2025屆高考數(shù)學(xué)必刷試卷含解析_第1頁
北京市海淀區(qū)十一學(xué)校2025屆高考數(shù)學(xué)必刷試卷含解析_第2頁
北京市海淀區(qū)十一學(xué)校2025屆高考數(shù)學(xué)必刷試卷含解析_第3頁
北京市海淀區(qū)十一學(xué)校2025屆高考數(shù)學(xué)必刷試卷含解析_第4頁
北京市海淀區(qū)十一學(xué)校2025屆高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市海淀區(qū)十一學(xué)校2025屆高考數(shù)學(xué)必刷試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.2.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.3.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.4.已知集合,則等于()A. B. C. D.5.世紀(jì)產(chǎn)生了著名的“”猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到.如圖是驗(yàn)證“”猜想的一個(gè)程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.6.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.7.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.8.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值9.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.10.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-511.已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.12.某個(gè)小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.140二、填空題:本題共4小題,每小題5分,共20分。13.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.14.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.15.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時(shí),為的幾何平均數(shù).(只需寫出一個(gè)符合要求的函數(shù)即可)16.函數(shù)的值域?yàn)開____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.18.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.19.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.20.(12分)已知,求的最小值.21.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.22.(10分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.2、A【解析】

畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.3、A【解析】

計(jì)算的中點(diǎn)坐標(biāo)為,圓半徑為,得到圓方程.【詳解】的中點(diǎn)坐標(biāo)為:,圓半徑為,圓方程為.故選:.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計(jì)算能力.4、C【解析】

先化簡集合A,再與集合B求交集.【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.5、C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.7、A【解析】

可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.8、B【解析】

判斷直線與縱軸交點(diǎn)的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.9、C【解析】

利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對應(yīng)的點(diǎn)的坐標(biāo)為(﹣1,2),故選:C【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.11、A【解析】

若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點(diǎn)為,若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.12、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C二、填空題:本題共4小題,每小題5分,共20分。13、答案不唯一,如【解析】

根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.14、【解析】

類比,三角形邊長類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點(diǎn)睛】本題考查類比推理.類比正弦定理可得,類比時(shí)有結(jié)構(gòu)類比,方法類比等.15、【解析】

由定義可知三點(diǎn)共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.16、【解析】

利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長.(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.18、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19、(1)證明見詳解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因?yàn)樗裕?)當(dāng)時(shí)所以當(dāng)且僅當(dāng)即時(shí)等號成立因?yàn)榇嬖?,且,使得成立所以所以或解得:或或【點(diǎn)睛】1.要熟練掌握絕對值的三角不等式,即2.應(yīng)用基本不等式求最值時(shí)要滿足“一正二定三相等”.20、【解析】

討論和的情況,然后再分對稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對稱軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。21、(1)(2)【解析】

(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因?yàn)榻菫殁g角,,所以,又,所以,且,所以.(2)因?yàn)椋?,所以,又,則,所以.22、(1)證明見解析;(2)【解析】

(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論