




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專(zhuān)題02函數(shù)的概念和性質(zhì)(練)【對(duì)點(diǎn)演練】一、單選題1.(2022·山西太原·高三期中)已知集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】解不等式SKIPIF1<0和SKIPIF1<0,再求交集即可.【詳解】由SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C2.(2022·海南昌茂花園學(xué)校高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件【答案】C【分析】先化簡(jiǎn)題目中的不等式,然后根據(jù)充分性和必要性的定義進(jìn)行判斷即可【詳解】由SKIPIF1<0結(jié)合函數(shù)SKIPIF1<0是SKIPIF1<0上的增函數(shù),可得SKIPIF1<0,由SKIPIF1<0結(jié)合函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),可得SKIPIF1<0,故“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,故選:C3.(2022·河南·模擬預(yù)測(cè)(理))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系是(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】SKIPIF1<0,通過(guò)比較5和SKIPIF1<0,可得到SKIPIF1<0大小關(guān)系.通過(guò)比較SKIPIF1<0與SKIPIF1<0,可得到SKIPIF1<0大小關(guān)系.【詳解】SKIPIF1<0,因SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0在在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.故選:A二、多選題4.(2022·山東·青島超銀高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0是偶函數(shù),SKIPIF1<0是奇函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0是SKIPIF1<0的周期函數(shù)【答案】ACD【分析】根據(jù)給定條件,利用奇偶性判斷A,B,C;推理計(jì)算并結(jié)合周期的意義判斷D作答.【詳解】因函數(shù)SKIPIF1<0是偶函數(shù),即SKIPIF1<0,于是得SKIPIF1<0,A正確;因函數(shù)SKIPIF1<0是奇函數(shù),即SKIPIF1<0,B不正確;因函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0,C正確;由選項(xiàng)A,C知,SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0是SKIPIF1<0的周期函數(shù),D正確.故選:ACD5.(2022·遼寧·丹東市教師進(jìn)修學(xué)院高三期中)已知定義域?yàn)镾KIPIF1<0的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,則必有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng)【答案】ACD【分析】根據(jù)函數(shù)SKIPIF1<0為奇函數(shù)可得SKIPIF1<0,又SKIPIF1<0則可得周期為3,從而可得SKIPIF1<0,再利用周期性與對(duì)稱(chēng)性逐項(xiàng)判斷即可.【詳解】解:已知定義域?yàn)镾KIPIF1<0的奇函數(shù)SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0又SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0是周期為3的函數(shù)所以SKIPIF1<0,故A正確;又由SKIPIF1<0可得SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),故SKIPIF1<0,故B錯(cuò)誤;由于SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0,則SKIPIF1<0,故C正確;由SKIPIF1<0周期為3,SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),可得SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),故D正確.故選:ACD.三、填空題6.(2022·江蘇·南京師大附中高三期中)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),則滿足SKIPIF1<0的SKIPIF1<0取值范圍是______.【答案】SKIPIF1<0【分析】判斷出SKIPIF1<0是奇函數(shù),結(jié)合函數(shù)的奇偶性、單調(diào)性化簡(jiǎn)不等式SKIPIF1<0,從而求得正確答案.【詳解】由于SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱(chēng),SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0取值范圍SKIPIF1<0.故答案為:SKIPIF1<07.(2022·天津市軍糧城中學(xué)高三期中)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是_________.【答案】SKIPIF1<0【分析】根據(jù)復(fù)合函數(shù)的單調(diào)性求解即可.【詳解】函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0為減函數(shù).當(dāng)SKIPIF1<0,SKIPIF1<0為減函數(shù),則SKIPIF1<0為增函數(shù).故答案為:SKIPIF1<0.8.(2022·廣西北?!ひ荒#ㄎ模┮阎婧瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,若SKIPIF1<0,則SKIPIF1<0____________.【答案】2【分析】根據(jù)SKIPIF1<0的周期性和對(duì)稱(chēng)性,求出一個(gè)周期內(nèi)的整數(shù)點(diǎn)處的函數(shù)值及它們的和,再根據(jù)SKIPIF1<0,求出505個(gè)周期內(nèi)的和加上SKIPIF1<0即可.【詳解】解:由題知,SKIPIF1<0,所以SKIPIF1<0周期為4,因?yàn)槠婧瘮?shù)SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故答案為:29.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0________,函數(shù)SKIPIF1<0的零點(diǎn)為_(kāi)_______.【答案】
SKIPIF1<0
SKIPIF1<0【分析】根據(jù)給定的分段函數(shù)求出函數(shù)值即可,再直接求出方程的解作答.【詳解】依題意,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0,無(wú)解,所以數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<010.(2022·北京市西城外國(guó)語(yǔ)學(xué)校高三階段練習(xí))函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____________________,單調(diào)遞增區(qū)間為_(kāi)__________.【答案】
SKIPIF1<0
SKIPIF1<0##SKIPIF1<0【分析】根據(jù)給定的函數(shù),列出不等式,解不等式得定義域;結(jié)合對(duì)數(shù)函數(shù)、二次函數(shù)單調(diào)性求解單調(diào)增區(qū)間作答.【詳解】函數(shù)SKIPIF1<0有意義,則有SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0;因函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0【沖刺提升】一、單選題1.(2022·河南·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】求出SKIPIF1<0,不等式轉(zhuǎn)化為SKIPIF1<0,分SKIPIF1<0與SKIPIF1<0兩種情況進(jìn)行求解,得到不等式的解集.【詳解】∵SKIPIF1<0,∴不等式轉(zhuǎn)化為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得:SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得:SKIPIF1<0.綜上所述,不等式的解集為SKIPIF1<0.故選:A.2.(2022·黑龍江·哈爾濱七十三中高三階段練習(xí))已知函數(shù)SKIPIF1<0,則“函數(shù)SKIPIF1<0為偶函數(shù)”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】根據(jù)偶函數(shù)的定義求出當(dāng)函數(shù)SKIPIF1<0為偶函數(shù)時(shí),實(shí)數(shù)SKIPIF1<0的值,再利用集合的包含關(guān)系判斷可得出結(jié)論.【詳解】若函數(shù)SKIPIF1<0為偶函數(shù),則對(duì)任意的SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0,又因?yàn)镾KIPIF1<0SKIPIF1<0,因此,“函數(shù)SKIPIF1<0為偶函數(shù)”是“SKIPIF1<0”的必要不充分條件.故選:B.3.(2022·海南昌茂花園學(xué)校高三階段練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上是單調(diào)遞增的,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)偶函數(shù)的性質(zhì)以及函數(shù)在SKIPIF1<0上單調(diào)遞增,比較自變量絕對(duì)值的大小即可得解.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上是單調(diào)遞增的,故SKIPIF1<0在SKIPIF1<0上是單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:B.4.(2022·全國(guó)·高三專(zhuān)題練習(xí))若函數(shù)SKIPIF1<0存在反函數(shù),則常數(shù)a的取值范圍為()A.(﹣∞,1] B.[1,2]C.[2,+∞) D.(﹣∞,1]∪[2,+∞)【答案】D【分析】依題意可得f(x)在[0,1]上單調(diào),分兩種情況討論,參變分離,結(jié)合指數(shù)函數(shù)的性質(zhì)能求出常數(shù)a的取值范圍.【詳解】解:∵函數(shù)SKIPIF1<0存在反函數(shù)∴函數(shù)SKIPIF1<0在[0,1]上單調(diào)若單調(diào)遞增,即SKIPIF1<0,則SKIPIF1<0在x∈[0,1]上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立∵SKIPIF1<0在[0,1]上單調(diào)遞增∴SKIPIF1<0∴a≤1若單調(diào)遞減,即SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立即SKIPIF1<0在SKIPIF1<0上恒成立∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增∴SKIPIF1<0∴SKIPIF1<0.綜上,常數(shù)a的取值范圍為SKIPIF1<0.故選:D.5.(2022·河南·高三階段練習(xí)(文))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0是偶函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則下列說(shuō)法不正確的是(
)A.SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的取值范圍為SKIPIF1<0C.SKIPIF1<0為奇函數(shù)D.方程SKIPIF1<0僅有5個(gè)不同實(shí)數(shù)解【答案】D【分析】由已知條件可得函數(shù)的對(duì)稱(chēng)中心及對(duì)稱(chēng)軸,利用對(duì)稱(chēng)中心和對(duì)稱(chēng)軸將已知區(qū)間圖象進(jìn)行多次對(duì)稱(chēng)變換,可得函數(shù)SKIPIF1<0的圖象,依據(jù)圖象對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象如圖:∵SKIPIF1<0是偶函數(shù),∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng),SKIPIF1<0在區(qū)間SKIPIF1<0的圖象如圖:∵SKIPIF1<0,∴將SKIPIF1<0中的SKIPIF1<0替換為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),SKIPIF1<0在區(qū)間SKIPIF1<0的圖象如圖:由函數(shù)圖象的對(duì)稱(chēng)軸直線SKIPIF1<0和對(duì)稱(chēng)中心SKIPIF1<0進(jìn)行多次對(duì)稱(chēng)變換,可得函數(shù)圖象如圖:由函數(shù)圖象可知,SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),函數(shù)SKIPIF1<0的對(duì)稱(chēng)軸為直線SKIPIF1<0(SKIPIF1<0Z),對(duì)稱(chēng)中心為點(diǎn)SKIPIF1<0(SKIPIF1<0Z),另外,函數(shù)的周期性還可以通過(guò)以下方法進(jìn)行證明:將SKIPIF1<0中的SKIPIF1<0替換為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由已知有SKIPIF1<0,∴SKIPIF1<0將SKIPIF1<0中SKIPIF1<0分別替換為SKIPIF1<0和SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0將SKIPIF1<0中SKIPIF1<0替換為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù).對(duì)于A,SKIPIF1<0,故A正確;對(duì)于B,當(dāng)SKIPIF1<0時(shí),由圖象可知其值域?yàn)镾KIPIF1<0,故B正確;對(duì)于C,由圖象知,其圖象的對(duì)稱(chēng)中心為點(diǎn)SKIPIF1<0(SKIPIF1<0Z),當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0為SKIPIF1<0圖象的對(duì)稱(chēng)中心,因此將SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度,所得函數(shù)SKIPIF1<0為奇函數(shù),故C正確;對(duì)于D,將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度,再將SKIPIF1<0軸下方的圖象翻折至SKIPIF1<0軸上方,得到函數(shù)SKIPIF1<0的圖象,易知SKIPIF1<0的圖象過(guò)點(diǎn)SKIPIF1<0如圖,SKIPIF1<0的圖象與SKIPIF1<0的圖象有6個(gè)交點(diǎn),所以方程SKIPIF1<0有6個(gè)不同實(shí)數(shù)解,故D錯(cuò)誤.故選:D.二、多選題6.(2022·廣東·高三階段練習(xí))若函數(shù)SKIPIF1<0和SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0有意義,SKIPIF1<0與SKIPIF1<0都為SKIPIF1<0上單調(diào)遞增的奇函數(shù),則(
)A.SKIPIF1<0為偶函數(shù) B.SKIPIF1<0為SKIPIF1<0上的單調(diào)遞增函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為SKIPIF1<0上的單調(diào)遞增函數(shù)【答案】ACD【分析】根據(jù)單調(diào)性、奇偶性的定義與結(jié)論逐項(xiàng)分析判斷.【詳解】選項(xiàng)A:由偶函數(shù)的定義直接得,SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故正確;選項(xiàng)B:SKIPIF1<0在SKIPIF1<0上不一定是增函數(shù),比如,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上都是奇函數(shù)且單調(diào)遞增,但SKIPIF1<0在SKIPIF1<0上不是單調(diào)遞增函數(shù),故不正確;選項(xiàng)C:SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),故正確;選項(xiàng)D:因?yàn)楹瘮?shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,且SKIPIF1<0有意義,由復(fù)合函數(shù)單調(diào)性的判斷法則得,SKIPIF1<0在SKIPIF1<0上一定是增函數(shù),故正確.故選:ACD.7.(2022·江蘇省灌南高級(jí)中學(xué)高三階段練習(xí))若SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】指數(shù)式換成對(duì)數(shù)式,解出SKIPIF1<0,逐個(gè)驗(yàn)證選項(xiàng).【詳解】由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,A選項(xiàng)正確;SKIPIF1<0,B選項(xiàng)錯(cuò)誤;SKIPIF1<0,C選項(xiàng)正確;SKIPIF1<0,D選項(xiàng)正確;故選:ACD8.(2022·重慶南開(kāi)中學(xué)高三階段練習(xí))已知SKIPIF1<0、SKIPIF1<0為函數(shù)SKIPIF1<0的兩個(gè)不相同的零點(diǎn),則下列式子一定正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【分析】分析可知直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),數(shù)形結(jié)合可得出SKIPIF1<0,利用基本不等式可判斷ABC選項(xiàng),利用特殊值法可判斷D選項(xiàng).【詳解】令SKIPIF1<0可得SKIPIF1<0,則直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),且這兩個(gè)交點(diǎn)的橫坐標(biāo)分別為SKIPIF1<0、SKIPIF1<0,如下圖所示:由圖可知,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,對(duì)于A選項(xiàng),SKIPIF1<0,A對(duì);對(duì)于B選項(xiàng),SKIPIF1<0,B對(duì);對(duì)于C選項(xiàng),SKIPIF1<0,則SKIPIF1<0,C對(duì);對(duì)于D選項(xiàng),取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,D錯(cuò).故選:ABC.9.(2022·遼寧·東北育才學(xué)校高三階段練習(xí))已知定義R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,又SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),且SKIPIF1<0,則(
)A.函數(shù)SKIPIF1<0的周期為12 B.SKIPIF1<0C.SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng) D.SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng)【答案】ABD【分析】結(jié)合函數(shù)的對(duì)稱(chēng)性、奇偶性、周期性確定正確答案.【詳解】由SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng).由于SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0是奇函數(shù).所以SKIPIF1<0,所以SKIPIF1<0的周期為SKIPIF1<0,A選項(xiàng)正確.SKIPIF1<0,B選項(xiàng)正確.結(jié)合上述分析可知,SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0(SKIPIF1<0)對(duì)稱(chēng),所以SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0(SKIPIF1<0)對(duì)稱(chēng),所以SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0(SKIPIF1<0)對(duì)稱(chēng),所以SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0(SKIPIF1<0)對(duì)稱(chēng),令SKIPIF1<0,得SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),D選項(xiàng)正確,C選項(xiàng)錯(cuò)誤.故選:ABD三、填空題10.(2022·湖北·仙桃市田家炳實(shí)驗(yàn)高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0為奇函數(shù),其圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)鋁顏料行業(yè)運(yùn)行現(xiàn)狀及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025-2030年中國(guó)鋁冶煉市場(chǎng)競(jìng)爭(zhēng)格局及前景趨勢(shì)預(yù)測(cè)報(bào)告
- 2025-2030年中國(guó)鎢行業(yè)未來(lái)投資預(yù)測(cè)發(fā)展戰(zhàn)略規(guī)劃分析報(bào)告
- 2025四川省建筑安全員《C證》考試題庫(kù)
- 2025-2030年中國(guó)過(guò)氧化鋅市場(chǎng)運(yùn)營(yíng)動(dòng)態(tài)及發(fā)展前景分析報(bào)告
- 2025-2030年中國(guó)車(chē)蠟行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)及發(fā)展盈利分析報(bào)告
- 2025-2030年中國(guó)貿(mào)易融資前景趨勢(shì)及發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國(guó)調(diào)味香料市場(chǎng)發(fā)展前景及投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)船舶制造行業(yè)發(fā)展?fàn)顩r及營(yíng)銷(xiāo)戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)紙基覆銅板市場(chǎng)十三五規(guī)劃及投資風(fēng)險(xiǎn)評(píng)估報(bào)告
- 高二數(shù)學(xué)(含創(chuàng)意快閃特效)-【開(kāi)學(xué)第一課】2023年高中秋季開(kāi)學(xué)指南之愛(ài)上數(shù)學(xué)課
- 《學(xué)前兒童社會(huì)教育》學(xué)前兒童社會(huì)教育概述-pp課件
- 全國(guó)醫(yī)學(xué)英語(yǔ)統(tǒng)考醫(yī)學(xué)英語(yǔ)詞匯表
- 【品牌建設(shè)研究國(guó)內(nèi)外文獻(xiàn)綜述5000字】
- 國(guó)家電網(wǎng)公司電力安全工作規(guī)程(電力通信部分)(試行)
- 第八版-精神分裂癥及其他精神病性障礙(中文)
- 小學(xué)一年級(jí)新生報(bào)名登記表
- 生態(tài)毒理學(xué)第三章毒物的分子效應(yīng)與毒理學(xué)機(jī)制
- 智能財(cái)務(wù)共享在京東的應(yīng)用研究
- 衛(wèi)生和微生物基礎(chǔ)知識(shí)培訓(xùn)-
- 2023年鎮(zhèn)江市高等專(zhuān)科學(xué)校單招綜合素質(zhì)題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論