




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東師范大學(xué)附中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.2.設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是()A.1 B.-1 C.0 D.23.已知是定義在上的奇函數(shù),且當(dāng)時(shí),.若,則的解集是()A. B.C. D.4.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.55.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a為()A. B.2 C. D.6.已知,,,則的最小值為()A. B. C. D.7.如圖所示,三國(guó)時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計(jì),取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1088.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.9.若的二項(xiàng)式展開(kāi)式中二項(xiàng)式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.410.已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.11.復(fù)數(shù)滿足,則()A. B. C. D.12.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,,是邊的垂直平分線上的一點(diǎn),則__________.14.若函數(shù)與函數(shù),在公共點(diǎn)處有共同的切線,則實(shí)數(shù)的值為_(kāi)_____.15.函數(shù)的值域?yàn)開(kāi)____.16.設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線l過(guò)交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿足,且,則橢圓C的離心率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)已知數(shù)列滿足,,其前n項(xiàng)和為.(1)通過(guò)計(jì)算,,,猜想并證明數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.19.(12分)設(shè)函數(shù),,其中,為正實(shí)數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;(2)設(shè),證明:對(duì)任意,都有.20.(12分)已知奇函數(shù)的定義域?yàn)?,且?dāng)時(shí),.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)求證:(,且).22.(10分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
畫(huà)出函數(shù)圖像,根據(jù)圖像知:,,,計(jì)算得到答案.【詳解】,畫(huà)出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.2、A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡(jiǎn)可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.3、B【解析】
利用函數(shù)奇偶性可求得在時(shí)的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時(shí),,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對(duì)稱區(qū)間的解析式;易錯(cuò)點(diǎn)是忽略奇函數(shù)在處有意義時(shí),的情況.4、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.5、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部為求得值.【詳解】解:在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,,即.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.6、B【解析】,選B7、B【解析】
根據(jù)幾何概型的概率公式求出對(duì)應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長(zhǎng)為1,則小直角三角形的邊長(zhǎng)為,
則小正方形的邊長(zhǎng)為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點(diǎn)睛】本題主要考查幾何概型的概率的應(yīng)用,求出對(duì)應(yīng)的面積之比是解決本題的關(guān)鍵.8、C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).9、C【解析】
由二項(xiàng)式系數(shù)性質(zhì),的展開(kāi)式中所有二項(xiàng)式系數(shù)和為計(jì)算.【詳解】的二項(xiàng)展開(kāi)式中二項(xiàng)式系數(shù)和為,.故選:C.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)式系數(shù)性質(zhì)是解題關(guān)鍵.10、A【解析】
若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.11、C【解析】
利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】
根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖形,設(shè)點(diǎn)為線段的中點(diǎn),可得出且,進(jìn)而可計(jì)算出的值.【詳解】設(shè)點(diǎn)為線段的中點(diǎn),則,,,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的計(jì)算,涉及平面向量數(shù)量積運(yùn)算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計(jì)算能力,屬于中等題.14、【解析】
函數(shù)的定義域?yàn)?,求出?dǎo)函數(shù),利用曲線與曲線公共點(diǎn)為由于在公共點(diǎn)處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域?yàn)?,,,設(shè)曲線與曲線公共點(diǎn)為,由于在公共點(diǎn)處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.15、【解析】
利用配方法化簡(jiǎn)式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問(wèn)題,屬基礎(chǔ)題。16、【解析】
采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:【點(diǎn)睛】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長(zhǎng)度,考查分析能力以及計(jì)算能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個(gè)根,可轉(zhuǎn)化為有3個(gè)根,即與有3個(gè)不同交點(diǎn),利用導(dǎo)數(shù)作出的圖象即可.【詳解】(1)令,則,當(dāng)時(shí),,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個(gè)零點(diǎn),即有3個(gè)根,顯然0不是其根,所以有3個(gè)根,令,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.18、(1),證明見(jiàn)解析;(2)【解析】
(1)首先利用賦值法求出的值,進(jìn)一步利用定義求出數(shù)列的通項(xiàng)公式;(2)首先利用疊乘法求出數(shù)列的通項(xiàng)公式,進(jìn)一步利用數(shù)列的單調(diào)性和基本不等式的應(yīng)用求出參數(shù)的范圍.【詳解】(1)數(shù)列滿足,,其前項(xiàng)和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,疊乘法的應(yīng)用,函數(shù)的單調(diào)性在數(shù)列中的應(yīng)用,基本不等式的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題型.19、(1)(2)證明見(jiàn)解析【解析】
(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時(shí),,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對(duì)任意,都有.【詳解】(1)解:因?yàn)楹瘮?shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時(shí),,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時(shí),設(shè),則圖象的對(duì)稱軸,,,所以在上存在唯一實(shí)根,設(shè)為,則,,,所以在上單調(diào)遞減,此時(shí),不合題意.綜上可得,實(shí)數(shù)的取值范圍是.(2)證明:由題意得,因?yàn)楫?dāng)時(shí),,,所以.令,則,所以在上單調(diào)遞增,,即,所以,從而.由(1)知當(dāng)時(shí),在上恒成立,整理得.令,則要證,只需證.因?yàn)椋栽谏蠁握{(diào)遞增,所以,即在上恒成立.綜上可得,對(duì)任意,都有成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明不等式,屬于難題.20、(1);(2)【解析】
(1)根據(jù)奇函數(shù)定義,可知;令則,結(jié)合奇函數(shù)定義即可求得時(shí)的解析式,進(jìn)而得函數(shù)的解析式;(2)根據(jù)零點(diǎn)定義,可得,由函數(shù)圖像分析可知曲線與直線在第三象限必1個(gè)交點(diǎn),因而需在第一象限有2個(gè)交點(diǎn),將與聯(lián)立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因?yàn)楹瘮?shù)為奇函數(shù),且,故;當(dāng)時(shí),,,則;故.(2)令,解得,畫(huà)出函數(shù)關(guān)系如下圖所示,要使曲線與直線有3個(gè)交點(diǎn),則2個(gè)交點(diǎn)在第一象限,1個(gè)交點(diǎn)在第三象限,聯(lián)立,化簡(jiǎn)可得,令,即,解得,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了根據(jù)函數(shù)奇偶性求解析式,分段函數(shù)圖像畫(huà)法,由函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍應(yīng)用,數(shù)形結(jié)合的應(yīng)用,屬于中檔題.21、(1)1;(2)見(jiàn)解析【解析】
(1)分別求得與的導(dǎo)函數(shù),由導(dǎo)函數(shù)與單調(diào)性關(guān)系即可求得的值;(2)由(1)可知當(dāng)時(shí),,當(dāng)時(shí),,因而,構(gòu)造,由對(duì)數(shù)運(yùn)算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當(dāng)時(shí),函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當(dāng)時(shí),,當(dāng)時(shí),.∴∴即,∴.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,放縮法在證明不等式中的應(yīng)用,屬于難題.22、(1);(2)存在,.【解析】
(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年酶(酵)素制劑項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 2025建筑裝飾分包合同(室內(nèi)外裝修及材料供應(yīng))
- 2025中國(guó)建設(shè)銀行擔(dān)保借款合同
- 2025裝修施工合同樣本
- 2025授權(quán)招聘人才合同樣本
- 2025工藝品購(gòu)銷合同范本
- 2025商標(biāo)專利合同范本 技術(shù)轉(zhuǎn)讓合同協(xié)議
- 2025聘請(qǐng)財(cái)務(wù)與市場(chǎng)顧問(wèn)合同「樣本」
- 2025辦公室租賃合同概述
- 2025標(biāo)準(zhǔn)租賃合同書(shū)寫(xiě)范本
- 六年級(jí)下冊(cè)美術(shù)教學(xué)設(shè)計(jì)-第3課《記錄色彩》人教新課標(biāo)
- 2024年全國(guó)青少年航天創(chuàng)新大賽航天知識(shí)競(jìng)賽試題
- 國(guó)開(kāi)(山西)2024年《使用法律基礎(chǔ)》形考作業(yè)1-4答案
- 2024年鄭州鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- DZ∕T 0204-2022 礦產(chǎn)地質(zhì)勘查規(guī)范 稀土(正式版)
- ~保安勞動(dòng)勞務(wù)合同書(shū)范本
- 2024年7月浙江省高中學(xué)業(yè)水平考試語(yǔ)文試卷試題(含答案詳解)
- 醫(yī)護(hù)患溝通技巧課件
- 2024年交管12123學(xué)法減分考試題庫(kù)及完整答案【考點(diǎn)梳理】
- 2022年第三屆大學(xué)生組織管理能力大賽真題題庫(kù)和答案
- 理綜-新疆烏魯木齊市2024年高三三??荚囋囶}和答案
評(píng)論
0/150
提交評(píng)論