




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市普通高中2025屆高三下學期聯(lián)合考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.92.已知函數(shù),以下結論正確的個數(shù)為()①當時,函數(shù)的圖象的對稱中心為;②當時,函數(shù)在上為單調遞減函數(shù);③若函數(shù)在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.43.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.4.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.75.設為銳角,若,則的值為()A. B. C. D.6.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.7.已知復數(shù),若,則的值為()A.1 B. C. D.8.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.9.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.10.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.512.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.1二、填空題:本題共4小題,每小題5分,共20分。13.在區(qū)間內任意取一個數(shù),則恰好為非負數(shù)的概率是________.14.某種牛肉干每袋的質量服從正態(tài)分布,質檢部門的檢測數(shù)據顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質量低于的袋數(shù)大約是_____袋.15.在中,,是的角平分線,設,則實數(shù)的取值范圍是__________.16.已知集合,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.(1)求拋物線的方程;(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設的中點為,若、、四點共圓,求直線的方程.18.(12分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.19.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).20.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.21.(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內單調遞減,求的取值范圍;(2)當時,設直線與函數(shù)的圖象相交于不同的兩點,,證明:.22.(10分)在平面直角坐標系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質結合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當時,,
令,則,解得或1,
又∵函數(shù)是定義域為的奇函數(shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個,
故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.2、C【解析】
逐一分析選項,①根據函數(shù)的對稱中心判斷;②利用導數(shù)判斷函數(shù)的單調性;③先求函數(shù)的導數(shù),若滿足條件,則極值點必在區(qū)間;④利用導數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數(shù)在上為單調遞減函數(shù),正確.③由題意知,當時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數(shù)的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.3、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質與識圖能力,一般根據四個選擇項來判斷對應的函數(shù)性質,即可排除三個不符的選項,屬于中檔題.4、B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題5、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯(lián)系.6、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.7、D【解析】由復數(shù)模的定義可得:,求解關于實數(shù)的方程可得:.本題選擇D選項.8、B【解析】
由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.9、A【解析】
先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數(shù)的圖象,考查學生對這些知識的理解掌握水平.10、C【解析】
根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.11、A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數(shù)據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.12、A【解析】
由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先分析非負數(shù)對應的區(qū)間長度,然后根據幾何概型中的長度模型,即可求解出“恰好為非負數(shù)”的概率.【詳解】當是非負數(shù)時,,區(qū)間長度是,又因為對應的區(qū)間長度是,所以“恰好為非負數(shù)”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區(qū)間長度.14、1【解析】
根據正態(tài)分布對稱性,求得質量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質量低于的袋數(shù)大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應用,屬于基礎題.15、【解析】
設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學生轉化劃歸,綜合分析,數(shù)學運算能力,屬于中檔題.16、【解析】
由可得集合是奇數(shù)集,由此可以得出結果.【詳解】解:因為所以集合中的元素為奇數(shù),所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質是本題解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由拋物線的定義可得,即可求出,從而得到拋物線方程;(2)設直線的方程為,代入,得.設,,列出韋達定理,表示出中點的坐標,若、、、四點共圓,再結合,得,則即可求出參數(shù),從而得解;【詳解】解:(1)由拋物線定義,得,解得,所以拋物線的方程為.(2)設直線的方程為,代入,得.設,,則,.由,,得,所以.因為直線的斜率為,所以直線的斜率為,則直線的方程為.由解得.若、、、四點共圓,再結合,得,則,解得,所以直線的方程為.【點睛】本題考查拋物線的定義及性質的應用,直線與拋物線綜合問題,屬于中檔題.18、(1);(2)或【解析】
(1)根據解析式求得導函數(shù),設切點坐標為,結合導數(shù)的幾何意義可得方程,構造函數(shù),并求得,由導函數(shù)求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結合零點定義化簡并分離參數(shù)得,構造函數(shù),根據題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,,,設切點為,,故,故,則;令,,故當時,,當時,,故當時,函數(shù)有最小值,由于,故有唯一實數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調遞減,在上單調遞增.又因為,,,,故當或時,直線與曲線在上有兩個交點,即當或時,函數(shù)在區(qū)間上有兩個零點.【點睛】本題考查了導數(shù)的幾何意義應用,由切線方程求參數(shù)值,構造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點的意義及綜合應用,屬于難題.19、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】
(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導數(shù)分析函數(shù)的單調性,進而可得出該函數(shù)的極小值;(3)由當時,以及,結合函數(shù)在區(qū)間上的單調性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為,所以,當時,函數(shù)有極小值;(3)當時,,且.由(2)可知,函數(shù)在上單調遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導數(shù)求函數(shù)的切線方程、極值以及利用導數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.20、(1);(2).【解析】
(1)由已知根據拋物線和橢圓的定義和性質,可求出,;(2)設直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△=8>0設,則【點睛】本題主要考查拋物線和橢圓的定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新規(guī)定:實習生也需簽訂勞動合同
- 2025【范本】房屋租賃合同協(xié)議
- 2025簡易個人借款合同書范本下載
- 2025體育賽事組委會責任保險合同樣本
- 2025墓地使用權轉讓合同
- 2025項目環(huán)境監(jiān)測評估驗收技術服務合同
- 2025房屋買賣合同模板2
- 2025交通運輸合同協(xié)議
- 2025解除租賃合同協(xié)議書
- 西北狼聯(lián)盟2025屆高三仿真模擬(二)歷史試題試卷含解析
- 2024年職業(yè)病防治考試題庫附答案(版)
- GB/T 4706.53-2024家用和類似用途電器的安全第53部分:坐便器的特殊要求
- 《智能網聯(lián)汽車用攝像頭硬件性能要求及試驗方法》編制說明
- 2024年3月ITSMS信息技術服務管理體系基礎(真題卷)
- 節(jié)能評審和節(jié)能評估文件編制費用收費標準
- 2023-2024年《勞務勞動合同樣本范本書電子版模板》
- 中國居民口腔健康狀況第四次中國口腔健康流行病學調查報告
- MOOC 數(shù)據挖掘-國防科技大學 中國大學慕課答案
- 中藥注射劑合理使用培訓
- 第13課+清前中期的興盛與危機【中職專用】《中國歷史》(高教版2023基礎模塊)
- 2024年國家糧食和物資儲備局直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論