




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
青海省青海師范大學(xué)第二附屬中學(xué)2025屆高三最后一卷數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則不等式的解集是()A. B. C. D.2.已知是定義在上的奇函數(shù),且當(dāng)時,.若,則的解集是()A. B.C. D.3.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.5.已知函數(shù),則()A.1 B.2 C.3 D.46.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.367.函數(shù)的對稱軸不可能為()A. B. C. D.8.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.9.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直10.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.11.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.12.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象向右平移個單位后,與函數(shù)的圖象重合,則_____.14.設(shè)定義域?yàn)榈暮瘮?shù)滿足,則不等式的解集為__________.15.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團(tuán)活動),排課要求為:語文、數(shù)學(xué)、外語、物理、化學(xué)各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學(xué)必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.16.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動到點(diǎn)處,且滿足.(1)證明:平面;(2)求二面角的余弦值.18.(12分)已知△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動點(diǎn)C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.19.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最小正整數(shù)的值.20.(12分)為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)萬眾矚目的第14屆全國冬季運(yùn)動運(yùn)會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運(yùn)動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,22.(10分)已知,,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,,的對邊分別為,,,且,,求邊上的高的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域?yàn)椋?,所以為奇函?shù),圖像關(guān)于原點(diǎn)對稱,所以圖像關(guān)于對稱.不等式等價于,等價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.2、B【解析】
利用函數(shù)奇偶性可求得在時的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點(diǎn)是忽略奇函數(shù)在處有意義時,的情況.3、B【解析】
根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。4、B【解析】
設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識,利用向量共線及向量運(yùn)算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.5、C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時等號成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡可得,即,則,當(dāng)且僅當(dāng),即時等號成立,從而的最小值為16,故選B.7、D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當(dāng)時,函數(shù)的對稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.8、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系10、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.11、B【解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點(diǎn)睛】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進(jìn)行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).12、B【解析】
由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導(dǎo)公式求得滿足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個單位后,得到的函數(shù)解析式為,因?yàn)楹瘮?shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因?yàn)?所以.故答案為:【點(diǎn)睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導(dǎo)公式;誘導(dǎo)公式的靈活運(yùn)用是求解本題的關(guān)鍵;屬于中檔題.14、【解析】
根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】設(shè)F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點(diǎn)睛】本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.15、1344【解析】
分四種情況討論即可【詳解】解:數(shù)學(xué)排在第一節(jié)時有:數(shù)學(xué)排在第二節(jié)時有:數(shù)學(xué)排在第三節(jié)時有:數(shù)學(xué)排在第四節(jié)時有:所以共有1344種故答案為:1344【點(diǎn)睛】考查排列、組合的應(yīng)用,注意分類討論,做到不重不漏;基礎(chǔ)題.16、【解析】
由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)取的中點(diǎn),連接,,由,進(jìn)而,由,得.進(jìn)而平面,進(jìn)而結(jié)論可得證(2)(方法一)過點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點(diǎn),上的點(diǎn),使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點(diǎn),連接,,由已知得,所以,又點(diǎn)是的中點(diǎn),所以.因?yàn)?,點(diǎn)是線段的中點(diǎn),所以.又因?yàn)?,所以,從而平面,所以,又,不平行,所以平?(2)(方法一)由(1)知,過點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則點(diǎn),,,,所以,,.設(shè)平面的法向量為,由,得,令,得.同理,設(shè)平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點(diǎn),上的點(diǎn),使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,,,所以.【點(diǎn)睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題18、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點(diǎn)的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因?yàn)閳AE為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點(diǎn)C的軌跡為以點(diǎn)A和點(diǎn)B為焦點(diǎn)的橢圓(點(diǎn)不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因?yàn)?,故四邊形為平行四邊?當(dāng)直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當(dāng)直線l的斜率存在時,設(shè)直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點(diǎn)O到直線MN的距離d,由,得xD,yD,∵點(diǎn)D在曲線C上,所以將D點(diǎn)坐標(biāo)代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.【點(diǎn)睛】本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運(yùn)算求解能力,屬于中檔題.19、(1)見解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項(xiàng)可知,當(dāng)時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進(jìn)而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時,,∴,,當(dāng)時,,整理可得,∴是首項(xiàng)為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點(diǎn)睛】本題考查了等差中項(xiàng),考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項(xiàng)相消求和.當(dāng)已知有與的遞推關(guān)系時,常代入進(jìn)行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項(xiàng)與前一項(xiàng)的差為常數(shù).20、(Ⅰ)填表見解析,有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān);(Ⅱ)分布列見解析,【解析】
(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(Ⅱ),計算,,,得到分布列,再計算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績在60分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.21、(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西運(yùn)城農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《四史》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海市普陀區(qū)2024-2025學(xué)年高三1月單科質(zhì)檢英語試題理試題含解析
- 上海中醫(yī)藥大學(xué)《醫(yī)學(xué)生物化學(xué)與分子生物學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 呂梁師范高等??茖W(xué)?!督y(tǒng)計學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海應(yīng)用技術(shù)大學(xué)《全科醫(yī)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年心理咨詢師考試試題及答案
- 2025年心理學(xué)專業(yè)研究生入學(xué)考試試題及答案
- 2025年藥學(xué)專業(yè)畢業(yè)生資格考試試題及答案
- 2025年司法考試模擬試卷及答案
- 2025年市場營銷專業(yè)考試試題及答案揭秘
- 2025-2030中國城市規(guī)劃行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報告
- 2025年全國焊工作業(yè)人員職業(yè)技能理論考試練習(xí)題庫(900題)含答案
- 《行政法與行政訴訟法》課件各章節(jié)內(nèi)容-第二十六章 行政賠償及訴訟
- 2025年江蘇省高郵市中考一模物理試題(原卷版+解析版)
- 【9物一模】2025年安徽省合肥市45中(橡樹灣)中考一模物理試卷
- 2.1+新民主主義革命的勝利+課件高中政治統(tǒng)編版必修一中國特色社會主義
- 關(guān)務(wù)培訓(xùn)課件
- 北京市豐臺區(qū)2025屆高三下學(xué)期3月一模試題 地理 含答案
- 2025年上海虹口區(qū)高三二模英語卷試題及答案詳解
- 員工涉黃賭毒協(xié)議書
- 招商引資工作課件
評論
0/150
提交評論