版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁南京審計(jì)大學(xué)金審學(xué)院
《大數(shù)據(jù)思維與決策》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)可視化中,選擇合適的圖表類型對(duì)于清晰傳達(dá)信息至關(guān)重要。假設(shè)要展示不同地區(qū)在過去十年間的人口增長(zhǎng)趨勢(shì),以下哪種圖表可能是最合適的?()A.餅圖B.雷達(dá)圖C.折線圖D.氣泡圖2、回歸分析用于建立變量之間的定量關(guān)系模型。假設(shè)要建立房?jī)r(jià)與房屋面積、地理位置等因素之間的回歸模型,以下關(guān)于回歸分析的描述,哪一項(xiàng)是不正確的?()A.線性回歸是一種常見的回歸方法,但對(duì)于非線性關(guān)系可能不適用B.多重共線性可能會(huì)導(dǎo)致回歸模型的參數(shù)估計(jì)不準(zhǔn)確,需要進(jìn)行檢測(cè)和處理C.回歸模型的擬合優(yōu)度可以用R平方值來衡量,R平方值越接近1,模型擬合效果越好D.一旦建立了回歸模型,就不需要再對(duì)模型進(jìn)行評(píng)估和改進(jìn),可以直接用于預(yù)測(cè)3、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶流量、購(gòu)買轉(zhuǎn)化率和客戶滿意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀判斷4、對(duì)于一個(gè)具有多個(gè)特征的數(shù)據(jù)集,若要進(jìn)行特征選擇,以下哪種方法是基于特征重要性評(píng)估的?()A.遞歸特征消除B.基于隨機(jī)森林的特征重要性評(píng)估C.基于LASSO回歸的特征選擇D.以上都是5、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的6、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要評(píng)估模型的性能。假設(shè)我們訓(xùn)練了一個(gè)分類模型,以下哪個(gè)評(píng)估指標(biāo)能夠綜合考慮模型的查準(zhǔn)率和查全率?()A.F1值B.準(zhǔn)確率C.召回率D.AUC值7、假設(shè)我們要分析某地區(qū)不同年齡段人口的收入水平,以下哪種數(shù)據(jù)分析方法可以直觀地展示收入隨年齡的變化趨勢(shì)?()A.分組柱狀圖B.折線圖C.箱線圖D.直方圖8、在數(shù)據(jù)分析中,評(píng)估模型的性能是關(guān)鍵步驟。假設(shè)建立了一個(gè)預(yù)測(cè)客戶流失的模型,需要評(píng)估模型在不同閾值下的準(zhǔn)確性、召回率和F1值等指標(biāo)。以下哪種評(píng)估方法在這種客戶關(guān)系管理場(chǎng)景中能夠更全面地評(píng)估模型的性能?()A.交叉驗(yàn)證B.留出法C.自助法D.以上方法效果相同9、當(dāng)分析一個(gè)在線教育平臺(tái)的學(xué)生學(xué)習(xí)行為數(shù)據(jù),比如學(xué)習(xí)時(shí)間、課程完成率、作業(yè)得分等,以評(píng)估教學(xué)質(zhì)量和學(xué)生的學(xué)習(xí)效果。由于學(xué)生的個(gè)體差異較大,為了進(jìn)行公平和準(zhǔn)確的分析,以下哪種處理方式可能是必要的?()A.對(duì)學(xué)生進(jìn)行分組比較B.只關(guān)注優(yōu)秀學(xué)生的數(shù)據(jù)C.忽略學(xué)習(xí)困難學(xué)生的數(shù)據(jù)D.不做任何特殊處理10、當(dāng)分析數(shù)據(jù)的分布特征時(shí),以下哪個(gè)圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖11、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過刪除包含大量缺失值的記錄來簡(jiǎn)化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)12、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)函數(shù)在Python中經(jīng)常被使用?()A.groupby()B.merge()C.concat()D.pivot_table()13、假設(shè)要分析一個(gè)市場(chǎng)調(diào)研數(shù)據(jù)集,了解消費(fèi)者對(duì)不同品牌、產(chǎn)品特性和價(jià)格的偏好。在設(shè)計(jì)調(diào)查問卷和收集數(shù)據(jù)時(shí),以下哪個(gè)原則可能是最重要的,以確保數(shù)據(jù)的質(zhì)量和有效性?()A.問題的清晰性和簡(jiǎn)潔性B.盡量多設(shè)置問題以獲取更多信息C.引導(dǎo)消費(fèi)者給出特定答案D.不考慮消費(fèi)者的反饋14、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可15、在數(shù)據(jù)挖掘中,Apriori算法常用于挖掘頻繁項(xiàng)集。以下關(guān)于Apriori算法的描述,正確的是?()A.它是一種無監(jiān)督學(xué)習(xí)算法B.它只能處理數(shù)值型數(shù)據(jù)C.它的計(jì)算復(fù)雜度較低D.它需要事先指定頻繁項(xiàng)集的支持度閾值16、在數(shù)據(jù)分析中,數(shù)據(jù)分析報(bào)告是一種重要的成果輸出形式。以下關(guān)于數(shù)據(jù)分析報(bào)告的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)分析報(bào)告應(yīng)該包括問題的背景、分析的方法、結(jié)果的呈現(xiàn)和結(jié)論的建議等內(nèi)容B.數(shù)據(jù)分析報(bào)告應(yīng)該使用簡(jiǎn)潔明了的語言,避免使用專業(yè)術(shù)語和復(fù)雜的公式C.數(shù)據(jù)分析報(bào)告應(yīng)該具有邏輯性和條理性,便于讀者理解和接受D.數(shù)據(jù)分析報(bào)告的結(jié)果可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求17、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要從客戶的評(píng)價(jià)文本中挖掘他們的滿意度,以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.可以使用詞袋模型將文本轉(zhuǎn)換為數(shù)值向量,以便進(jìn)行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無法確定每個(gè)文本所屬的具體主題D.文本挖掘不需要對(duì)文本進(jìn)行預(yù)處理,如分詞和去除停用詞18、在進(jìn)行數(shù)據(jù)可視化時(shí),選擇合適的圖表類型要根據(jù)數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)你要展示不同年齡段人群的收入分布情況,以下關(guān)于圖表選擇的建議,哪一項(xiàng)是最恰當(dāng)?shù)模浚ǎ〢.使用折線圖,體現(xiàn)收入隨年齡的變化趨勢(shì)B.運(yùn)用柱狀圖,比較不同年齡段的收入水平C.選擇餅圖,展示各年齡段收入在總體中的占比D.采用雷達(dá)圖,綜合展示多個(gè)相關(guān)變量19、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性20、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的方法有很多,其中柱狀圖是一種常用的圖表類型。以下關(guān)于柱狀圖的描述中,錯(cuò)誤的是?()A.柱狀圖可以用來比較不同類別之間的數(shù)據(jù)大小B.柱狀圖可以顯示數(shù)據(jù)的分布情況和趨勢(shì)C.柱狀圖的柱子寬度應(yīng)該根據(jù)數(shù)據(jù)的數(shù)量進(jìn)行調(diào)整D.柱狀圖的柱子顏色可以根據(jù)需要進(jìn)行選擇和設(shè)置二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),如何考慮外部因素的影響?請(qǐng)舉例說明如何將外部因素納入預(yù)測(cè)模型中。2、(本題5分)簡(jiǎn)述數(shù)據(jù)分析師如何與利益相關(guān)者進(jìn)行有效的溝通,以確保數(shù)據(jù)分析結(jié)果得到正確理解和應(yīng)用,包括溝通技巧和注意事項(xiàng)。3、(本題5分)解釋什么是自動(dòng)機(jī)器學(xué)習(xí)(AutoML),說明其在數(shù)據(jù)分析中的作用和優(yōu)勢(shì),并舉例分析其應(yīng)用場(chǎng)景。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某游戲開發(fā)公司積累了玩家在游戲中的行為數(shù)據(jù)、消費(fèi)記錄、游戲時(shí)長(zhǎng)等。分析如何依據(jù)這些數(shù)據(jù)優(yōu)化游戲設(shè)計(jì)和盈利模式。2、(本題5分)某醫(yī)院保存了患者的病歷信息、診斷結(jié)果、治療方案、用藥情況等數(shù)據(jù)。研究如何運(yùn)用這些數(shù)據(jù)輔助疾病診斷和治療方案的制定。3、(本題5分)某網(wǎng)約車平臺(tái)收集了司機(jī)和乘客的行程數(shù)據(jù)、評(píng)價(jià)數(shù)據(jù)、投訴數(shù)據(jù)等。思考如何通過這些數(shù)據(jù)提升平臺(tái)的服務(wù)質(zhì)量和安全性。4、(本題5分)某視頻網(wǎng)站的紀(jì)錄片類目擁有用戶觀看數(shù)據(jù),如紀(jì)錄片主題、觀看時(shí)長(zhǎng)、評(píng)論熱度、分享意愿等。分析紀(jì)錄片主題與觀看時(shí)長(zhǎng)和評(píng)論熱度、分享意愿的相關(guān)性。5、(本題5分)某在線金融理財(cái)平臺(tái)收集了用戶投資數(shù)據(jù)、風(fēng)險(xiǎn)偏好、產(chǎn)品收益等。為用戶提供個(gè)性化的理財(cái)建議,優(yōu)化產(chǎn)品推薦。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)在市場(chǎng)營(yíng)銷活動(dòng)中,數(shù)據(jù)分析能夠精準(zhǔn)定位目標(biāo)客戶和評(píng)估營(yíng)銷效果。請(qǐng)?jiān)敿?xì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025北京市個(gè)體工商戶雇工勞動(dòng)合同書范文
- 2025年度按摩店合伙人市場(chǎng)分析與競(jìng)爭(zhēng)策略協(xié)議3篇
- 2025年度農(nóng)村墓地建設(shè)項(xiàng)目投資合作協(xié)議書
- 二零二五年度養(yǎng)老公寓入住與休閑娛樂服務(wù)合同3篇
- 二零二五年度公司企業(yè)間新能源車輛購(gòu)置借款合同3篇
- 2025年度工傷賠償爭(zhēng)議解決機(jī)制協(xié)議書3篇
- 二零二五年度養(yǎng)老機(jī)構(gòu)兼職校醫(yī)照護(hù)服務(wù)合同3篇
- 二零二五年度養(yǎng)殖場(chǎng)專業(yè)技術(shù)人員聘用合同3篇
- 二零二五年度地下停車場(chǎng)開發(fā)與運(yùn)營(yíng)管理合同3篇
- 二零二五年度智能電網(wǎng)設(shè)備采購(gòu)合同風(fēng)險(xiǎn)識(shí)別與防范3篇
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗(yàn)方法第1部分:衛(wèi)星定位
- 浙江省杭州市錢塘區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期英語期末試卷
- 1古詩文理解性默寫(教師卷)
- 廣東省廣州市越秀區(qū)2021-2022學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含答案)
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測(cè)卷(含答案)
- 在線教育平臺(tái)合作合同助力教育公平
- 工地鋼板短期出租合同模板
- 女排精神課件教學(xué)課件
- 2024年湖南省公務(wù)員考試《行測(cè)》真題及答案解析
評(píng)論
0/150
提交評(píng)論